Publications by authors named "Grayson T"

Article Synopsis
  • TXNIP plays a crucial role in pancreatic beta cell function, and its increase in diabetes negatively impacts glucose regulation; however, deleting TXNIP in beta cells can protect against diabetes in mice.
  • The study focused on creating a knockout mouse model that lacks TXNIP in alpha cells, revealing that these aTKO mice showed improved glucose tolerance and lower blood sugar levels after being on a high-fat diet compared to normal mice.
  • In diabetic conditions, the lack of TXNIP in alpha cells resulted in decreased glucagon secretion without altering insulin production, indicating that reduced TXNIP may help lower blood glucose by managing glucagon levels.
View Article and Find Full Text PDF

Endoplasmic reticulum (ER) stress contributes to pancreatic beta-cell apoptosis in diabetes, but the factors involved are still not fully elucidated. Growth differentiation factor 15 (GDF15) is a stress response gene and has been reported to be increased and play an important role in various diseases. However, the role of GDF15 in beta cells in the context of ER stress and diabetes is still unclear.

View Article and Find Full Text PDF

Currently, no oral medications are available for type 1 diabetes (T1D). While our recent randomized placebo-controlled T1D trial revealed that oral verapamil had short-term beneficial effects, their duration and underlying mechanisms remained elusive. Now, our global T1D serum proteomics analysis identified chromogranin A (CHGA), a T1D-autoantigen, as the top protein altered by verapamil and as a potential therapeutic marker and revealed that verapamil normalizes serum CHGA levels and reverses T1D-induced elevations in circulating proinflammatory T-follicular-helper cell markers.

View Article and Find Full Text PDF

This article proposes potential strategies to address gun violence in communities of color while identifying the harms associated with a policing-centered, criminal legal approach. In addition to highlighting the dangers associated with the United States' current criminal legal tactics to reduce gun violence in these communities, the authors advocate for community-endorsed strategies that give those impacted by this issue the resources to take on gun violence in their own communities. Specifically, they identify, describe, and endorse a series of violence prevention programs that rely on community relations to detect and prevent incidents of gun violence and that view gun violence as a public health rather than criminal legal issue.

View Article and Find Full Text PDF
Article Synopsis
  • Diabetes is defined by high blood sugar levels, reduced insulin production from pancreatic beta cells, and increased glucagon secretion, but current treatments do not address these issues.
  • Researchers screened 300,000 compounds to identify SRI-37330, a safe, orally taken small molecule that showed promise in reversing diabetes in mice caused by streptozotocin and obesity.
  • SRI-37330 works by blocking a protein linked to poor islet function, lowering glucagon secretion, reducing liver glucose production, and improving liver fat levels, suggesting a new potential treatment for diabetes.
View Article and Find Full Text PDF

Pancreatic beta-cell death is a major factor in the pathogenesis of type 1 diabetes (T1D), but straightforward methods to measure beta-cell loss in humans are lacking, underlining the need for novel biomarkers. Using studies in INS-1 cells, human islets, diabetic mice, and serum samples of subjects with T1D at different stages, we have identified serum miR-204 as an early biomarker of T1D-associated beta-cell loss in humans. MiR-204 is a highly enriched microRNA in human beta-cells, and we found that it is released from dying beta-cells and detectable in human serum.

View Article and Find Full Text PDF

Pancreatic beta cell loss is a key factor in the pathogenesis of type 1 diabetes (T1D), but therapies to halt this process are lacking. We previously reported that the approved antihypertensive calcium-channel blocker verapamil, by decreasing the expression of thioredoxin-interacting protein, promotes the survival of insulin-producing beta cells and reverses diabetes in mouse models. To translate these findings into humans, we conducted a randomized double-blind placebo-controlled phase 2 clinical trial ( NCT02372253 ) to assess the efficacy and safety of oral verapamil added for 12 months to a standard insulin regimen in adult subjects with recent-onset T1D.

View Article and Find Full Text PDF

The multivariate AMBI (M-AMBI) is an extension of the AZTI Marine Biotic Index (AMBI) that has been used extensively in Europe, but not in the United States. In a previous study, we adapted AMBI for use in US coastal waters (US AMBI), but saw biases in salinity and score distribution when compared to locally calibrated indices. In this study we modified M-AMBI for US waters and compared its performance to that of US AMBI.

View Article and Find Full Text PDF

Glucagon-like peptide 1 receptor (GLP1R) agonists are widely used to treat diabetes. However, their function is dependent on adequate GLP1R expression, which is downregulated in diabetes. GLP1R is highly expressed on pancreatic β-cells, and activation by endogenous incretin or GLP1R agonists increases cAMP generation, which stimulates glucose-induced β-cell insulin secretion and helps maintain glucose homeostasis.

View Article and Find Full Text PDF

Transient receptor potential canonical type 3 channels (TRPC3) are expressed in neural, cardiac, respiratory and vascular tissues, with both similarities and differences between human and animal models for the same cell types. In common with all members of the six subfamilies of TRP channels, TRPC3 are non-voltage gated, non-selective cation channels that are mainly permeated by Ca, and have distinct molecular, biophysical, anatomical and functional properties. TRP channels are present in excitable and non-excitable cells where they sense and respond to a wide variety of physical and chemical stimuli.

View Article and Find Full Text PDF

Endoplasmic reticulum (ER) stress plays an important role in the pathogenesis of diabetes and the associated β-cell apoptosis. Although microRNAs (miRNAs) have been widely studied in various diseases including diabetes, the role of miRNAs in ER stress and β-cell apoptosis has only started to be elucidated. We recently showed that diabetes increases β-cell miR-204 and have now discovered that miR-204 directly targets the 3'untranslated region of protein kinase R-like ER kinase (PERK), 1 of the 3 ER transmembrane sensors and a key factor of the unfolded protein response (UPR).

View Article and Find Full Text PDF

This study investigated the expression and function of transient receptor potential vanilloid type-3 ion channels (TRPV3) in uterine radial arteries isolated from non-pregnant and twenty-day pregnant rats. Immunohistochemistry (IHC) suggested TRPV3 is primarily localized to the smooth muscle in arteries from both non-pregnant and pregnant rats. IHC using C' targeted antibody, and qPCR of TRPV3 mRNA, suggested pregnancy increased arterial TRPV3 expression.

View Article and Find Full Text PDF

Thioredoxin-interacting protein (TXNIP) is a key regulator of diabetic β-cell apoptosis and dysfunction, and TXNIP inhibition prevents diabetes in mouse models of type 1 and type 2 diabetes. Although we have previously shown that TXNIP is strongly induced by glucose, any regulation by the proinflammatory cytokines tumor necrosis factor α (TNFα), interleukin-1β (IL-1β), and interferon γ (IFNγ) has remained largely unexplored. Moreover, even though this three-cytokine mixture is widely used to mimic type 1 diabetes in vitro, the mechanisms involved are not fully understood.

View Article and Find Full Text PDF

In pregnancy, the vasculature of the uterus undergoes rapid remodelling to increase blood flow and maintain perfusion to the fetus. The present study determines the distribution and density of caveolae, transient receptor potential vanilloid type 4 channels (TRPV4) and myoendothelial gap junctions, and the relative contribution of related endothelium-dependent vasodilator components in uterine radial arteries of control virgin non-pregnant and 20-day late-pregnant rats. The hypothesis examined is that specific components of endothelium-dependent vasodilator mechanisms are altered in pregnancy-related uterine radial artery remodelling.

View Article and Find Full Text PDF

In pregnancy, α-adrenoceptor-mediated vasoconstriction is augmented in uterine radial arteries and is accompanied by underlying changes in smooth muscle (SM) Ca(2+) activity. This study aims to determine the Ca(2+) entry channels associated with altered vasoconstriction in pregnancy, with the hypothesis that augmented vasoconstriction involves transient receptor potential canonical type-3 (TRPC3) and L- and T-type voltage-dependent Ca(2+) channels. Immunohistochemistry showed TRPC3, L-type Cav1.

View Article and Find Full Text PDF

Objective: To determine whether impairment of endothelial connexin40 (Cx40), an effect that can occur in hypertension and aging, contributes to the arterial dysfunction and stiffening in these conditions.

Approach And Results: A new transgenic mouse strain, expressing a mutant Cx40, (Cx40T202S), specifically in the vascular endothelium, has been developed and characterized. This mutation produces nonfunctional hemichannels, whereas gap junctions containing the mutant are electrically, but not chemically, patent.

View Article and Find Full Text PDF

Diet-induced obesity induces changes in mechanisms that are essential for the regulation of normal artery function, and in particular the function of the vascular endothelium. Using a rodent model that reflects the characteristics of human dietary obesity, in the rat saphenous artery we have previously demonstrated that endothelium-dependent vasodilation shifts from an entirely nitric oxide (NO)-mediated mechanism to one involving upregulation of myoendothelial gap junctions and intermediate conductance calcium-activated potassium channel activity and expression. This study investigates the changes in NO-mediated mechanisms that accompany this shift.

View Article and Find Full Text PDF

Aims: Microdomain signalling mechanisms underlie key aspects of artery function and the modulation of intracellular calcium, with transient receptor potential (TRP) channels playing an integral role. This study determines the distribution and role of TRP canonical type 3 (C3) channels in the control of endothelium-derived hyperpolarization (EDH)-mediated vasodilator tone in rat mesenteric artery.

Methods And Results: TRPC3 antibody specificity was verified using rat tissue, human embryonic kidney (HEK)-293 cells stably transfected with mouse TRPC3 cDNA, and TRPC3 knock-out (KO) mouse tissue using western blotting and confocal and ultrastructural immunohistochemistry.

View Article and Find Full Text PDF

Obesity is a risk factor for hypertension and other vascular disease. The aim of this study was to examine the effect of diet-induced obesity on endothelium-dependent dilation of rat cremaster muscle arterioles. Male Sprague-Dawley rats (213 ± 1 g) were fed a cafeteria-style high-fat or control diet for 16-20 wk.

View Article and Find Full Text PDF

Vascular tone refers to the balance between arterial constrictor and dilator activity. The mechanisms that underlie tone are critical for the control of haemodynamics and matching circulatory needs with metabolism, and thus alterations in tone are a primary factor for vascular disease etiology. The dynamic spatiotemporal control of intracellular Ca(2+) levels in arterial endothelial and smooth muscle cells facilitates the modulation of multiple vascular signaling pathways.

View Article and Find Full Text PDF

Mechanisms underlying obesity-related vascular dysfunction are unclear. This study examined the effect of diet-induced obesity on expression and function of large conductance Ca(2+)-activated potassium channel (BK(Ca)) in rat pressurized small resistance vessels with myogenic tone. Male Sprague-Dawley rats fed a cafeteria-style high fat diet (HFD; ∼30% energy from fat) for 16-20 wk were ∼30% heavier than controls fed standard chow (∼13% fat).

View Article and Find Full Text PDF

Background: The vascular endothelium plays a critical role in the control of blood flow. Altered endothelium-mediated vasodilator and vasoconstrictor mechanisms underlie key aspects of cardiovascular disease, including those in obesity. Whilst the mechanism of nitric oxide (NO)-mediated vasodilation has been extensively studied in obesity, little is known about the impact of obesity on vasodilation to the endothelium-derived hyperpolarization (EDH) mechanism; which predominates in smaller resistance vessels and is characterized in this study.

View Article and Find Full Text PDF

Myoendothelial microdomain signaling via localized calcium-activated potassium channel (K(Ca)) and gap junction connexins (Cx) is critical for endothelium-dependent vasodilation in rat mesenteric artery. The present study determines the relative contribution of NO and gap junction-K(Ca) mediated microdomain signaling to endothelium-dependent vasodilation in human mesenteric artery. The hypothesis tested was that such activity is due to NO and localized K(Ca) and Cx activity.

View Article and Find Full Text PDF

The mechanisms involved in altered endothelial function in obesity-related cardiovascular disease are poorly understood. This study investigates the effect of chronic obesity on endothelium-dependent vasodilation and the relative contribution of nitric oxide (NO), calcium-activated potassium channels (K(Ca)), and myoendothelial gap junctions (MEGJs) in the rat saphenous artery. Obesity was induced by feeding rats a cafeteria-style diet (∼30 kJ as fat) for 16 to 20 weeks, with this model reflecting human dietary obesity etiology.

View Article and Find Full Text PDF