Publications by authors named "Grayson S Doucette"

The ligand-nanocrystal boundaries of colloidal quantum dots (QDs) mediate the primary energy and electron transfer processes that underpin photochemical and photocatalytic transformations at their surfaces. We use mid-infrared transient absorption spectroscopy to reveal the influence that ligand structure and bonding to nanocrystal surfaces have on the changes of the excited state surface chemistry of this boundary in PbS QDs and the corresponding impact on charge transfer processes between nanocrystals. We demonstrate that oleate ligands undergo marked changes in their bonding to surfaces in the excitonic excited states of the nanocrystals, indicating that oleate passivated PbS surfaces undergo significant structural changes following photoexcitation.

View Article and Find Full Text PDF

The ligand shell around colloidal quantum dots mediates the electron and energy transfer processes that underpin their use in optoelectronic and photocatalytic applications. Here, we show that the surface chemistry of carboxylate anchoring groups of oleate ligands passivating PbS quantum dots undergoes significant changes when the quantum dots are excited to their excitonic states. We directly probe the changes of surface chemistry using time-resolved mid-infrared spectroscopy that records the evolution of the vibrational frequencies of carboxylate groups following excitation of the electronic states.

View Article and Find Full Text PDF

We use native vibrational modes of the model singlet fission chromophore 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-Pn) to examine the origins of singlet fission in solution between molecules that are not tethered by a covalent linkage. We use the C-H stretch modes of TIPS side groups of TIPS-Pn to demonstrate that singlet fission does not occur by diffusive encounter of independent molecules in solution. Instead, TIPS-Pn molecules aggregate in solution through their TIPS side groups.

View Article and Find Full Text PDF

Singlet fission is a process that splits collective excitations, or excitons, into two with unity efficiency. This exciton splitting process, unique to molecular photophysics, has the potential to considerably improve the efficiency of optoelectronic devices through more efficient light harvesting. While the first step of singlet fission has been characterized in great detail, subsequent steps critical to achieving overall highly-efficient singlet-to-triplet conversion are only just beginning to become well understood.

View Article and Find Full Text PDF

Observations of the hot-phonon bottleneck, which is predicted to slow the rate of hot carrier cooling in quantum confined nanocrystals, have been limited to date for reasons that are not fully understood. We used time-resolved infrared spectroscopy to directly measure higher energy intraband transitions in PbS colloidal quantum dots. Direct measurements of these intraband transitions permitted detailed analysis of the electronic overlap of the quantum confined states that may influence their relaxation processes.

View Article and Find Full Text PDF

Ultrafast vibrational spectroscopy in the mid-infrared was used to directly probe the delocalization of excitons in two different perylenediimide (PDI) derivatives that are predicted to preclude the formation of excimers, which can act as trap sites for excited state energy in organic semiconductors. We identified vibrational modes within the conjugated C-C stretch modes of PDI molecules whose frequencies reported the interactions of molecules within delocalized excitonic states. The vibrational linewidths of these modes, which we call intermolecular coordinate coupled (ICC) modes, provided a direct probe of the extent of exciton delocalization among the PDI molecules, which was confirmed using X-ray diffraction and electro-absorption spectroscopy.

View Article and Find Full Text PDF

The multiplication of excitons in organic semiconductors via singlet fission offers the potential for photovoltaic cells that exceed the Shockley-Quiesser limit for single-junction devices. To fully utilize the potential of singlet fission sensitizers in devices, it is necessary to understand and control the diffusion of the resultant triplet excitons. In this work, a new processing method is reported to systematically tune the intermolecular order and crystalline structure in films of a model singlet fission chromophore, 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-Pn), without the need for chemical modifications.

View Article and Find Full Text PDF