IEEE Trans Control Syst Technol
November 2024
IEEE Robot Autom Lett
March 2024
Lower-limb wearable robots designed to assist people in everyday activities must reliably recover from any momentary confusion about what the user is doing. Such confusion might arise from momentary sensor failure, collision with an obstacle, losing track of gait due to an out-of-distribution stride, etc. Systems that infer a user's walking condition from angle measurements using Bayesian filters (e.
View Article and Find Full Text PDFEmerging partial-assistance exoskeletons can enhance able-bodied performance and aid people with pathological gait or age-related immobility. However, every person walks differently, which makes it difficult to directly compute assistance torques from joint kinematics. Gait-state estimation-based controllers use phase (normalized stride time) and task variables (e.
View Article and Find Full Text PDFRobotic ankle exoskeletons have been shown to reduce human effort during walking. However, existing ankle exoskeleton control approaches are limited in their ability to apply biomimetic torque across diverse tasks outside of the controlled lab environment. Energy shaping control can provide task-invariant assistance without estimating the user's state, classifying task, or reproducing pre-defined torque trajectories.
View Article and Find Full Text PDFPositive biomechanical outcomes have been reported with lower-limb exoskeletons in laboratory settings, but these devices have difficulty delivering appropriate assistance in synchrony with human gait as the task or rate of phase progression change in real-world environments. This paper presents a controller for an ankle exoskeleton that uses a data-driven kinematic model to continuously estimate the phase, phase rate, stride length, and ground incline states during locomotion, which enables the real-time adaptation of torque assistance to match human torques observed in a multi-activity database of 10 able-bodied subjects. We demonstrate in live experiments with a new cohort of 10 able-bodied participants that the controller yields phase estimates comparable to the state of the art, while also estimating task variables with similar accuracy to recent machine learning approaches.
View Article and Find Full Text PDFMany exoskeletons today are primarily tested in controlled, steady-state laboratory conditions that are unrealistic representations of their real-world usage in which walking conditions (.., speed, slope, and stride length) change constantly.
View Article and Find Full Text PDFTask-specific, trajectory-based control methods commonly used in exoskeletons may be appropriate for individuals with paraplegia, but they overly constrain the volitional motion of individuals with remnant voluntary ability (representing a far larger population). Human-exoskeleton systems can be represented in the form of the Euler-Lagrange equations or, equivalently, the port-controlled Hamiltonian equations to design control laws that provide assistance across a continuum of activities/environments by altering energetic properties of the human body. We previously introduced a port-controlled Hamiltonian framework that parameterizes the control law through basis functions related to gravitational and gyroscopic terms, which are optimized to fit normalized able-bodied joint torques across multiple walking gaits on different ground inclines.
View Article and Find Full Text PDFJ Neuroeng Rehabil
February 2022
Background: The purpose of augmentative exoskeletons is to help people exceed the limitations of their human bodies, but this cannot be realized unless people choose to use these exciting technologies. Although human walking efficiency has been highly optimized over generations, exoskeletons have been able to consistently improve this efficiency by 10-15%. However, despite these measurable improvements, exoskeletons today remain confined to the laboratory.
View Article and Find Full Text PDFAugmenting the physical strength of a human operator during unpredictable human-directed (volitional) movements is a relevant capability for several proposed exoskeleton applications, including mobility augmentation, manual material handling, and tool operation. Unlike controllers and augmentation systems designed for repetitive tasks (e.g.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
November 2020
The natural impedance, or dynamic relationship between force and motion, of a human operator can determine the stability of exoskeletons that use interaction-torque feedback to amplify human strength. While human impedance is typically modelled as a linear system, our experiments on a single-joint exoskeleton testbed involving 10 human subjects show evidence of nonlinear behavior: a low-frequency asymptotic phase for the dynamic stiffness of the human that is different than the expected zero, and an unexpectedly consistent damping ratio as the stiffness and inertia vary. To explain these observations, this article considers a new frequency-domain model of the human joint dynamics featuring complex value stiffness comprising a real stiffness term and a hysteretic damping term.
View Article and Find Full Text PDF