The β decay of ^{208}Hg into the one-proton hole, one neutron-particle _{81}^{208}Tl_{127} nucleus was investigated at CERN-ISOLDE. Shell-model calculations describe well the level scheme deduced, validating the proton-neutron interactions used, with implications for the whole of the N>126, Z<82 quadrant of neutron-rich nuclei. While both negative and positive parity states with spin 0 and 1 are expected within the Q_{β} window, only three negative parity states are populated directly in the β decay.
View Article and Find Full Text PDFResonant laser ionization and spectroscopy are widely used techniques at radioactive ion beam facilities to produce pure beams of exotic nuclei and measure the shape, size, spin and electromagnetic multipole moments of these nuclei. However, in such measurements it is difficult to combine a high efficiency with a high spectral resolution. Here we demonstrate the on-line application of atomic laser ionization spectroscopy in a supersonic gas jet, a technique suited for high-precision studies of the ground- and isomeric-state properties of nuclei located at the extremes of stability.
View Article and Find Full Text PDFA low-lying state in 131In82, the one-proton hole nucleus with respect to double magic 132Sn, was observed by its γ decay to the Iπ=1/2- β-emitting isomer. We identify the new state at an excitation energy of Ex=1353 keV, which was populated both in the β decay of 131Cd83 and after β-delayed neutron emission from 132Cd84, as the previously unknown πp3/2 single-hole state with respect to the 132Sn core. Exploiting this crucial new experimental information, shell-model calculations were performed to study the structure of experimentally inaccessible N=82 isotones below 132Sn.
View Article and Find Full Text PDFA measurement of the reduced transition probability for the excitation of the ground state to the first 2+ state in 104Sn has been performed using relativistic Coulomb excitation at GSI. 104Sn is the lightest isotope in the Sn chain for which this quantity has been measured. The result is a key point in the discussion of the evolution of nuclear structure in the proximity of the doubly magic nucleus 100Sn.
View Article and Find Full Text PDFDtsch Med Wochenschr
March 2013
History And Admission Findings: A 43-year-old woman presented with persistent dry cough and exertional dyspnoea for about 6 months. An outpatient CT scan of the chest led to the diagnosis of pulmonary thromboembolism.
Investigations: The echocardiography showed signs of right ventricular load.
The shell structure of atomic nuclei is associated with 'magic numbers' and originates in the nearly independent motion of neutrons and protons in a mean potential generated by all nucleons. During β(+)-decay, a proton transforms into a neutron in a previously not fully occupied orbital, emitting a positron-neutrino pair with either parallel or antiparallel spins, in a Gamow-Teller or Fermi transition, respectively. The transition probability, or strength, of a Gamow-Teller transition depends sensitively on the underlying shell structure and is usually distributed among many states in the neighbouring nucleus.
View Article and Find Full Text PDFA β-decaying high-spin isomer in (96)Cd, with a half-life T(1/2)=0.29(-0.10)(+0.
View Article and Find Full Text PDFPhys Rev Lett
September 2007
The gamma decay of excited states in the waiting-point nucleus (130)Cd(82) has been observed for the first time. An 8(+) two-quasiparticle isomer has been populated both in the fragmentation of a (136)Xe beam as well as in projectile fission of 238U, making (130)Cd the most neutron-rich N = 82 isotone for which information about excited states is available. The results, interpreted using state-of-the-art nuclear shell-model calculations, show no evidence of an N = 82 shell quenching at Z = 48.
View Article and Find Full Text PDFGamma decays from excited states up to Jpi=6+ in the N=Z-2 nucleus 54Ni have been identified for the first time. Level energies are compared with those of the isobars 54Co and 54Fe and of the cross-conjugate nuclei of mass A=42. The good but puzzling f7/ cross-conjugate symmetry in mirror and triplet energy differences is analyzed.
View Article and Find Full Text PDFAims: Pixel tracking-derived myocardial deformation imaging is a new echocardiographic modality which allows quantitative analysis of segmental myocardial function on the basis of tracking of natural acoustic markers in 2D echocardiography. This study evaluated whether myocardial deformation parameters calculated from 2D echocardiography allow assessment of transmurality of myocardial infarction as defined by contrast-enhanced cardiac magnetic resonance imaging (ceMRI). Methods In 47 patients with ischaemic left ventricular dysfunction, transmurality of myocardial infarction was assessed using pixel-tracking-derived myocardial deformation imaging and ceMRI.
View Article and Find Full Text PDFThe reduced transition probabilities B(E2;0(+) --> 2(+)(1)) of the neutron-rich (74)Zn and (70)Ni nuclei have been measured by Coulomb excitation in a (208)Pb target at intermediate energy. These nuclei have been produced at Grand Accélérateur National d'Ions Lourds via interactions of a 60A MeV (76)Ge beam with a Be target. The B(E2) value for (70)Ni(42) is unexpectedly large, which indicates that neutrons added above N=40 strongly polarize the Z=28 proton core.
View Article and Find Full Text PDFStress cardiomyopathy is a novel clinical syndrome affecting predominantly elderly female patients. It is characterized by severe reversible left ventricular dysfunction demonstrating a peculiar pattern of extensive apical wall motion abnormality known as "apical ballooning". The syndrome is typically precipitated by acute severe emotional, psychological or physical stress.
View Article and Find Full Text PDFThe stability and spontaneous decay of naturally occurring atomic nuclei have been much studied ever since Becquerel discovered natural radioactivity in 1896. In 1960, proton-rich nuclei with an odd or an even atomic number Z were predicted to decay through one- and two-proton radioactivity, respectively. The experimental observation of one-proton radioactivity was first reported in 1982, and two-proton radioactivity has now also been detected by experimentally studying the decay properties of 45Fe (refs 3, 4) and 54Zn (ref.
View Article and Find Full Text PDFThe monopole effect of the tensor force is presented, exhibiting how spherical single-particle energies are shifted as protons or neutrons occupy certain orbits. An analytic relation for such shifts is shown, and their general features are explained intuitively. Single-particle levels are shown to change in a systematic and robust way, by using the pi + rho meson exchange tensor potential, consistently with the chiral perturbation idea.
View Article and Find Full Text PDFWe have observed direct one-proton decay of the (21+) isomer in the N=Z nuclide 94Ag into high-spin states in 93Pd by detecting protons in coincidence with gamma-gamma correlations and applying gamma gates based on known 93Pd levels. Two decay branches have been identified, with proton energies of 0.79(3) and 1.
View Article and Find Full Text PDFThe neutron-rich (66,68)Ni have been produced at GANIL via interactions of a 65.9A MeV 70Zn beam with a 58Ni target. Their reduced transition probability B(E2;0(+)(1)-->2+) has been measured for the first time by Coulomb excitation in a (208)Pb target at intermediate energy.
View Article and Find Full Text PDFPhys Rev Lett
September 2001
Gamma rays from the N = Z-2 nucleus (50)Fe have been observed, establishing the rotational ground state band up to the state J(pi) = 11+ at 6.994 MeV excitation energy. The experimental Coulomb energy differences, obtained by comparison with the isobaric analog states in its mirror (50)Cr, confirm the qualitative interpretation of the backbending patterns in terms of successive alignments of proton and neutron pairs.
View Article and Find Full Text PDFExcited states in (216)Th were investigated via prompt and delayed gamma decays and the recoil-decay tagging method. The decay schemes of the I(pi) = (8+), t(1/2) = 128(8) micros, the I(pi) = (11-), t(1/2) = 615(55) ns, and the I(pi) = (14+), t(1/2) > or = 130 ns isomers were established. The configuration pi h(9/2)f(7/2) is assigned to the I(pi) = (8+) isomer, which implies that the h(9/2) and f(7/2) states are nearly degenerate.
View Article and Find Full Text PDF