The endangered Pyrenean Capercaillie (Tetrao urogallus aquitanicus) inhabits perennial forests of the Pyrenees (Spain, France and Andorre). Feces of domestic animals (e.g.
View Article and Find Full Text PDFThere is increasing evidence to suggest that soil nutrient availability can limit the carbon sink capacity of forests, a particularly relevant issue considering today's changing climate. This question is especially important in the tropics, where most part of the Earth's plant biomass is stored. To assess whether tropical forest growth is limited by soil nutrients and to explore N and P limitations, we analyzed stem growth and foliar elemental composition of the five stem widest trees per plot at two sites in French Guiana after 3 years of nitrogen (N), phosphorus (P), and N + P addition.
View Article and Find Full Text PDFPlanetary Health has emerged as a new approach to respond to the existential risks that the clime and global environmental crises pose to human societies. As stated by various stakeholders, the challenges involved in Planetary Health are of such magnitude that education must be at the forefront to obtain a meaningful response. Universities and higher education institutions have been specifically called to embed the concept of planetary stewardship in all curricula and train the next generation of researchers and change makers as a matter of urgency.
View Article and Find Full Text PDFUnderstanding the mechanisms that drive the change of biotic assemblages over space and time is the main quest of community ecology. Assessing the relative importance of dispersal and environmental species selection in a range of organismic sizes and motilities has been a fruitful strategy. A consensus for whether spatial and environmental distances operate similarly across spatial scales and taxa, however, has yet to emerge.
View Article and Find Full Text PDFProduction, emission, and absorption of biogenic volatile organic compounds (BVOCs) in ecosystem soils and associated impacts of nutrient availability are unclear; thus, predictions of effects of global change on source-sink dynamic under increased atmospheric N deposition and nutrition imbalances are limited. Here, we report the dynamics of soil BVOCs under field conditions from two undisturbed tropical rainforests from French Guiana. We analyzed effects of experimental soil applications of nitrogen (N), phosphorus (P), and N + P on soil BVOC exchanges (in particular of total terpenes, monoterpenes, and sesquiterpenes), to determine source and sink dynamics between seasons (dry and wet) and elevations (upper and lower elevations corresponding to top of the hills (30 m high) and bottom of the valley).
View Article and Find Full Text PDFEctomycorrhizal (EcM) and saprotrophic fungi interact in the breakdown of organic matter, but the mechanisms underlying the EcM role on organic matter decomposition are not totally clear. We hypothesized that the ecological relations between EcM and saprotroph fungi are modulated by resources availability and accessibility, determining decomposition rates. We manipulated the amount of leaf litter inputs (No-Litter, Control Litter, Doubled Litter) on Trenched (root exclusion) and Non-Trenched plots (with roots) in a temperate deciduous forest of EcM-associated trees.
View Article and Find Full Text PDFResorption is the active withdrawal of nutrients before leaf abscission. This mechanism represents an important strategy to maintain efficient nutrient cycling; however, resorption is poorly characterized in old-growth tropical forests growing in nutrient-poor soils. We investigated nutrient resorption from leaves in 39 tree species in two tropical forests on the Guiana Shield, French Guiana, to investigate whether resorption efficiencies varied with soil nutrient, seasonality, and species traits.
View Article and Find Full Text PDFParkinsonism Relat Disord
March 2021
Introduction: The MDS-PSP criteria expand the phenotypic spectrum of PSP by adding to Richardson's syndrome (PSP-RS) other presentations such as PSP-parkinsonism (PSP-P), PSP-pure-gait-freezing (PSP-PGF), PSP-speech-language (PSP-SL), PSP-frontal (PSP-F), PSP-postural-instability (PSP-PI) and PSP-corticobasal-syndrome (PSP-CBS). Evidence about the prognostic differences between PSP phenotypes is scarce and focused on PSP-RS vs. non-PSP-RS.
View Article and Find Full Text PDFGlobal climate and land use change are causing woody plant encroachment in arctic, alpine, and arid/semi-arid ecosystems around the world, yet our understanding of the belowground impacts of this phenomenon is limited. We conducted a globally distributed field study of 13 alpine sites across four continents undergoing woody plant encroachment and sampled soils from both woody encroached and nearby herbaceous plant community types. We found that woody plant encroachment influenced soil microbial richness and community composition across sites based on multiple factors including woody plant traits, site level climate, and abiotic soil conditions.
View Article and Find Full Text PDFProductivity of tropical lowland moist forests is often limited by availability and functional allocation of phosphorus (P) that drives competition among tree species and becomes a key factor in determining forestall community diversity. We used non-target P-NMR metabolic profiling to study the foliar P-metabolism of trees of a French Guiana rainforest. The objective was to test the hypotheses that P-use is species-specific, and that species diversity relates to species P-use and concentrations of P-containing compounds, including inorganic phosphates, orthophosphate monoesters and diesters, phosphonates and organic polyphosphates.
View Article and Find Full Text PDFBackground And Aims: Biological fixation of atmospheric nitrogen (N) is the main pathway for introducing N into unmanaged ecosystems. While recent estimates suggest that free-living N fixation (FLNF) accounts for the majority of N fixed in mature tropical forests, the controls governing this process are not completely understood. The aim of this study was to quantify FLNF rates and determine its drivers in two tropical pristine forests of French Guiana.
View Article and Find Full Text PDFTropical rainforests harbor a particularly high plant diversity. We hypothesize that potential causes underlying this high diversity should be linked to distinct overall functionality (defense and growth allocation, anti-stress mechanisms, reproduction) among the different sympatric taxa. In this study we tested the hypothesis of the existence of a metabolomic niche related to a species-specific differential use and allocation of metabolites.
View Article and Find Full Text PDFThe majority of variation in six traits critical to the growth, survival and reproduction of plant species is thought to be organised along just two dimensions, corresponding to strategies of plant size and resource acquisition. However, it is unknown whether global plant trait relationships extend to climatic extremes, and if these interspecific relationships are confounded by trait variation within species. We test whether trait relationships extend to the cold extremes of life on Earth using the largest database of tundra plant traits yet compiled.
View Article and Find Full Text PDFWe observed strong positive relationships between soil properties and forest dynamics of growth and mortality across twelve primary lowland tropical forests in a phosphorus-poor region of the Guiana Shield. Average tree growth (diameter at breast height) increased from 0.81 to 2.
View Article and Find Full Text PDFSoil fauna is a key control of the decomposition rate of leaf litter, yet its interactions with litter quality and the soil environment remain elusive. We conducted a litter decomposition experiment across different topographic levels within the landscape replicated in two rainforest sites providing natural gradients in soil fertility to test the hypothesis that low nutrient availability in litter and soil increases the strength of fauna control over litter decomposition. We crossed these data with a large dataset of 44 variables characterizing the biotic and abiotic microenvironment of each sampling point and found that microbe-driven carbon (C) and nitrogen (N) losses from leaf litter were 10.
View Article and Find Full Text PDFAim: Plant functional groups are widely used in community ecology and earth system modelling to describe trait variation within and across plant communities. However, this approach rests on the assumption that functional groups explain a large proportion of trait variation among species. We test whether four commonly used plant functional groups represent variation in six ecologically important plant traits.
View Article and Find Full Text PDFThe encroachment of shrubs into grasslands is common in terrestrial ecosystems dominated by grass. Land abandonment and favourable climatic trends in recent decades have favoured the expansion of shrubs into subalpine grasslands in many mountainous regions across Europe. The advance of the succession from grassland to shrubland is expected to have a major impact on ecosystem functioning.
View Article and Find Full Text PDFTreelines are sensitive to environmental changes, but few studies provide a mechanistic approach to understand treeline dynamics based on field experiments. The aim of this study was to determine how changes in the abiotic and/or biotic conditions associated with global change affect the performance of tree seedlings (later saplings) at the treeline in a 10-year experiment. A fully factorial experiment in the Central Pyrenees was initiated in autumn 2006; 192 seedlings were transplanted into microplots with contrasting environmental conditions of (1) increased vs.
View Article and Find Full Text PDFThe tundra is warming more rapidly than any other biome on Earth, and the potential ramifications are far-reaching because of global feedback effects between vegetation and climate. A better understanding of how environmental factors shape plant structure and function is crucial for predicting the consequences of environmental change for ecosystem functioning. Here we explore the biome-wide relationships between temperature, moisture and seven key plant functional traits both across space and over three decades of warming at 117 tundra locations.
View Article and Find Full Text PDFThe neuroanatomical bases of episodic memory (EM) and executive functions (EFs) have been widely addressed in patients with brain damage and in individuals with neurologic disorders. These studies reported that larger brain structures support better outcomes in both cognitive domains, thereby supporting the "bigger is better" account. However, relatively few studies have explored the cerebral morphological properties underlying EM and EFs in cognitively healthy individuals and current findings indicate no unitary theoretical explanation for the structure-function relationship.
View Article and Find Full Text PDFFungi play a key role in soil-plant interactions, nutrient cycling and carbon flow and are essential for the functioning of arctic terrestrial ecosystems. Some studies have shown that the composition of fungal communities is highly sensitive to variations in environmental conditions, but little is known about how the conditions control the role of fungal communities (i.e.
View Article and Find Full Text PDFGlobal change impacts on biogeochemical cycles have been widely studied, but our understanding of whether the responses of plant elemental composition to global change drivers differ between above- and belowground plant organs remains incomplete. We conducted a meta-analysis of 201 reports including 1,687 observations of studies that have analyzed simultaneously N and P concentrations changes in leaves and roots in the same plants in response to drought, elevated [CO ], and N and P fertilization around the world, and contrasted the results within those obtained with a general database (838 reports and 14,772 observations) that analyzed the changes in N and P concentrations in leaves and/or roots of plants submitted to the commented global change drivers. At global level, elevated [CO ] decreased N concentrations in leaves and roots and decreased N:P ratio in roots but no in leaves, but was not related to P concentration changes.
View Article and Find Full Text PDFTropical forests store large amounts of biomass despite they generally grow in nutrient-poor soils, suggesting that the role of soil characteristics in the structure and dynamics of tropical forests is complex. We used data for >34 000 trees from several permanent plots in French Guiana to investigate if soil characteristics could predict the structure (tree diameter, density and aboveground biomass), and dynamics (growth, mortality, aboveground wood productivity) of nutrient-poor tropical forests. Most variables did not covary with site-level changes in soil nutrient content, indicating that nutrient-cycling mechanisms other than the direct absorption from soil (e.
View Article and Find Full Text PDF