Publications by authors named "Gratton E"

The dissociation of the subunits of human adult oxyhemoglobin has been investigated by using steady-state fluorescence anisotropy, multifrequency phase fluorometry, and high hydrostatic pressure. Human hemoglobin obtained by using two purification procedures (bulk preparation by centrifugation or further fractionation using anion-exchange chromatography) was labeled with an extrinsic fluorescent probe, 5-(dimethylamino)naphthalene-1-sulfonyl chloride (DNS-Cl). The long fluorescence lifetime of this probe allows for the observation of the macromolecular tumbling, and thus provides a method for observing changes in the size of the complex upon subunit dissociation under differing solution conditions of proton and organic phosphate concentration.

View Article and Find Full Text PDF

The internal dynamics of human superoxide dismutase has been studied using time-resolved fluorescence. The fluorescence decay has been analyzed using continuous distribution of lifetime values. The effect of temperature and conformational state on the lifetime distribution has been investigated.

View Article and Find Full Text PDF

Fluorescence decay studies, obtained by multifrequency phase-modulation fluorometry, have been performed on DAPI in solution and complexed with natural and synthetic polydeoxynucleotides. DAPI decay at pH 7 was decomposed using two exponential components of 2.8 and 0.

View Article and Find Full Text PDF

The fluorescence decay of 1-(4-trimethylammonium-phenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH) was used to study micro-heterogeneity of 1,2-dimyristoyl-3-sn-phosphatidylcholine (DMPC) liposomes and to characterize the effect of phosphatidic acid on the correlation between fluorescence microheterogeneity and membrane permeability. The fluorescence decay, measured using multifrequency phase fluorometry, has been analyzed either by using a model of discrete exponential components or a model of continuous distribution of lifetime values. Both analyses have shown that TMA-DPH decay is characterized by two components: a long one of about 9 ns and a short one of about 5 ns.

View Article and Find Full Text PDF

Steady-state and time-resolved fluorescence anisotropy measurements of eosin in solution and eosin-5-maleimide bound to purified myosin were made to study localized motions of the "head region" of this protein. The lifetime and apparent Debye rotational relaxation times of eosin in aqueous solution are essentially invariant with changes in excitation wavelength. In more viscous solvents, such as propylene glycol/water mixtures, the apparent Debye rotational relaxation times of eosin differ upon excitation in the regions of positive and negative anisotropy.

View Article and Find Full Text PDF

The organization of lipids surrounding membrane proteins can influence their properties. We have used 6-dodecanoyl-2-dimethylaminonaphthalene (Laurdan) to study phase coexistence and phase interconversion in membrane model systems. The fluorescence properties of Laurdan provide a unique possibility to study lipid domains because of the different excitation and emission spectra of this probe in the gel and in the liquid-crystalline phase.

View Article and Find Full Text PDF

The intrinsic fluorescence decay of human Cu,Zn superoxide dismutase was measured by frequency-domain techniques. The protein consists of two subunits, each containing one tryptophan and no tyrosine residues. Using a synchrotron radiation source, which allows facile selection of the excitation wavelength, the dependence of the emission decay upon excitation was studied.

View Article and Find Full Text PDF

We have measured the decay of chlorophyll a fluorescence at 4 degrees C under anaerobic conditions in stabilized photosystem II reaction center complex isolated from spinach, using multifrequency (2-400 MHz) cross-correlation phase fluorometry. Examination of our data shows that although the fluorescence decay of open reaction centers (i.e.

View Article and Find Full Text PDF

Changes in the thermal behavior of DMPC (dimyristoyl-r-phosphatidylcholine) and an equimolar mixture of DMPC and DMPE (dimyristoyl-L-phosphatidylethanolamine) induced by the plant hormone abscisic acid (ABA) have been investigated using fluorescent probes. The fluorescence decay of the hydrophobic probe 1,6-diphenyl-1,3,5-hexatriene (DPH) in these vesicles has been measured using frequency-domain fluorometry, and has been analyzed using both models of discrete exponential components and continuous lifetime distributions. In the DMPC vesicles, using the distributional approach, higher center and width values were observed in the presence of abscisic acid (ABA), indicating a decrease in the dielectric constant of the lipid phase that we attribute to a decrease in the water concentration within the bilayer.

View Article and Find Full Text PDF

Steady-state and dynamic fluorescence measurements have been performed on DAPI in solution and in complexes formed with a number of synthetic and natural polydeoxynucleotides. The decay of DAPI in buffer at pH 7 was decomposed using two exponentials having lifetime values of approximately 2.8 ns and 0.

View Article and Find Full Text PDF

Changes in the thermal behavior of DMPC (dimyristoyl-L-phosphatidylcholine) and an equimolar mixture of DMPC and DMPE (dimyristoyl-L-phosphatidylethanolamine) induced by the plant hormone abscisic acid (ABA) have been investigated using fluorescent probes. The fluorescence decay of the hydrophobic probe 1,6-diphenyl-1,3,5-hexatriene (DPH) in these vesicles has been measured using frequency-domain fluorometry, and has been analyzed using both models of discrete exponential components and continuous lifetime distributions. In the DMPC vesicles, using the distributional approach, higher center and width values were observed in the presence of abscisic acid (ABA), indicating a decrease in the dielectric constant of the lipid phase that we attribute to a decrease in the water concentration within the bilayer.

View Article and Find Full Text PDF

The fluorescence properties of three copper proteins, namely human superoxide dismutase, Pseudomonas aeruginosa azurin and Thiobacillus versutus amicyanin have been studied. All these proteins show a non-exponential decay of fluorescence, though the tryptophanyl residues responsible for the emission are very differently located in the three proteins. All the three decays can be fitted by at least two lifetimes or better with one or two lorentzian-shaped, continuous distributions of lifetime.

View Article and Find Full Text PDF

Time-resolved fluorescence of 4',6-diamidino-2-phenylindole (DAPI) complexes show that for a homogeneous polymer (polyd(AT) or polyd(A).polyd(T)) at high P/D (phosphate/dye) ratio, a single exponential component adequately describes the fluorescence decay. For the AT polymers at low P/D ratio or for native DNA, the decay cannot be described by a single-exponential term.

View Article and Find Full Text PDF

Fluorescence depolarization is a powerful technique in resolving dynamics of molecular systems. Data obtained in fluorescence depolarization experiments are highly complex. Mathematical models for analyzing data from depolarization due to rotational motion have been largely based on the rotational diffusion equation.

View Article and Find Full Text PDF

The effect of cholesterol on microheterogeneity of liposomes obtained from saturated and unsaturated phospholipids was studied by measuring the fluorescence decay of 1,6-diphenyl-1,3,5-hexatriene (DPH). Data obtained by frequency domain fluorometry have been analyzed either by discrete exponential or continuous lifetime distribution approaches. In egg phosphatidylcholine liposomes, the addition of cholesterol increases the lifetime value or the centre of the lifetime distribution.

View Article and Find Full Text PDF

Multifrequency phase fluorometry was used to determine the lifetime distributions of 1,6 diphenyl-1,3,5-hexatriene in 1-palmitoyl-2 linoleoyl phosphatidylcholine small unilamellar vesicles containing 2% incorporation of phospholipid hydroperoxides. A biexponential decay was observed in both vesicle preparations over a temperature range of 5 to 35 degrees C. Vesicles containing phospholipid hydroperoxides showed an overall longer lifetime as well as a greater distribution in width.

View Article and Find Full Text PDF

The tryptophanyl fluorescence decays of two myoglobins, i.e., sperm whale and tuna myoglobin, have been examined in the frequency domain with an apparatus which utilizes the harmonic content of a mode-locked laser.

View Article and Find Full Text PDF

The fluorescent sterol delta 5,7,9,(11)-cholestatrien-3 beta-ol (cholestatrienol) was incoporated into 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) small unilamellar vesicles (SUV) with and without cholesterol in order to monitor sterol-sterol interactions in model membranes. Previously another fluorescent sterol, dehydroergosterol (F. Schroeder, Y.

View Article and Find Full Text PDF

TMA-DPH fluorescence decay in human PMN before and after stimulation with FMLP was studied using frequency domain fluorometry. Membrane heterogeneity was assessed by the width of the continuous distributions of lifetime values of Lorentzian shape used to describe the fluorescence decay. In non-stimulated granulocytes TMA-DPH fluorescence decay is characterized by two distributions of lifetime values centered at 6.

View Article and Find Full Text PDF

The fluorescence decay of 1,6 diphenyl-1,3,5-hexatriene (DPH) has been used to characterize aspects of the erythrocyte membrane structure related to the microheterogeneity of the lipid bilayer. The DPH decay has been studied using frequency domain fluorometry and the data analyzed either by a model of discrete exponential components or a model that assumes a continuous distribution of lifetime values. The main intensity fraction was associated with a lifetime value centered at about 11 ns in the erythrocyte membrane, but a short component of very low fractional intensity had to be considered to obtain a good fit to the data.

View Article and Find Full Text PDF

Proteins exhibit, even in their native state, a large number of conformations differing in small details (substates). The fluorescence lifetime of tryptophanyl residues can reflect the microenvironmental characteristics of these subconformations. We have analyzed the lifetime distribution of the unique indole residue of tuna apomyoglobin (Trp A-12) during the unfolding induced by temperature or guanidine hydrochloride.

View Article and Find Full Text PDF

The decay of the intrinsic fluorescence of the apoferritin polymer and its subunits has been studied by pulse and phase shift techniques. Both techniques show that the fluorescence decay of all the samples tested cannot be described by a single exponential function. The fluorescence decay data of the apoferritin subunits obtained with either technique can be fitted satisfactorily with a function resulting from the sum of two exponential components.

View Article and Find Full Text PDF