Publications by authors named "Grasiela Torres"

This review comprehensively examines the molecular biology and genetic origins of cellular senescence. We focus on various cellular stressors and pathways leading to senescence, including recent advances in the understanding of the genetic influences driving senescence, such as telomere attrition, chemotherapy-induced DNA damage, pathogens, oncogene activation, and cellular and metabolic stress. This review also highlights the complex interplay of various signaling and metabolic pathways involved in cellular senescence and provides insights into potential therapeutic targets for aging-related diseases.

View Article and Find Full Text PDF

The cell envelope of Gram-negative bacteria consists of three distinct layers: the cytoplasmic membrane, a cell wall made of peptidoglycan (PG), and an asymmetric outer membrane (OM) composed of phospholipid in the inner leaflet and lipopolysaccharide (LPS) glycolipid in the outer leaflet. The PG layer has long been thought to be the major structural component of the envelope protecting cells from osmotic lysis and providing them with their characteristic shape. In recent years, the OM has also been shown to be a load-bearing layer of the cell surface that fortifies cells against internal turgor pressure.

View Article and Find Full Text PDF

Unlabelled: The cell envelope of Gram-negative bacteria consists of three distinct layers: the cytoplasmic membrane, a cell wall made of peptidoglycan (PG), and an asymmetric outer membrane (OM) composed of phospholipid in the inner leaflet and lipopolysaccharide (LPS) glycolipid in the outer leaflet. The PG layer has long been thought to be the major structural component of the envelope protecting cells from osmotic lysis and providing them with their characteristic shape. In recent years, the OM has also been shown to be a load-bearing layer of the cell surface that fortifies cells against internal turgor pressure.

View Article and Find Full Text PDF

The bacterial peptidoglycan (PG) cell wall maintains cell shape and prevents osmotic lysis. During growth of rod-shaped cells, PG is incorporated along the cell cylinder by the RodA-PBP2 synthase of the multi-protein Rod system (elongasome). Filaments of the actin-like MreB protein orient synthesis of the new PG material.

View Article and Find Full Text PDF

Bacterial cells are surrounded by a peptidoglycan (PG) cell wall. This structure is essential for cell integrity and its biogenesis pathway is a key antibiotic target. Most bacteria utilize two types of synthases that polymerize glycan strands and crosslink them: class A penicillin-binding proteins (aPBPs) and complexes of SEDS proteins and class B PBPs (bPBPs).

View Article and Find Full Text PDF