Diisopropylammonium bromide (DIPAB) doped poly(vinylidene difluoride) (PVDF) nanofibers (5, 10 and 24 wt% DIPAB doping) with improved and tunable dielectric properties were synthesised electrospinning. DIPAB nanoparticles were grown during the nanofiber formation. X-Ray diffraction (XRD) patterns and Fourier transform infrared spectroscopy (FTIR) proved that electrospinning of DIPAB doped PVDF solutions led to the formation of a highly electro-active β-phase in the nanofibers.
View Article and Find Full Text PDFAn electrically modulated diffraction grating has been demonstrated in poled polymer thin films containing the organic nonlinear optical chromophore, PYR-3 (2-{3-Cyano-4-[3-(1-decyl-1 H-pyridin-4-ylidene)-propenyl]-5,5-dimethy l-5 H-furan-2-ylidene}-malononitrile), and amorphous polycarbonate. A dc electric field induced change in the diffraction efficiency of up to 9% was observed. The diffraction efficiency modulation was likely due to an electric field induced change in the film thickness via a piezoelectric effect rather than via an electronic linear electro-optic effect.
View Article and Find Full Text PDFWe report on the results from a (75)As nuclear magnetic resonance (NMR) study of the overdoped iron pnictide superconductor CeFeAsO0.8F0.2.
View Article and Find Full Text PDFThis Communication describes the synthesis of highly monodispersed 12 nm nickel nanocubes. The cubic shape was achieved by using trioctylphosphine and hexadecylamine surfactants under a reducing hydrogen atmosphere to favor thermodynamic growth and the stabilization of {100} facets. Varying the metal precursor to trioctylphosphine ratio was found to alter the nanoparticle size and shape from 5 nm spherical nanoparticles to 12 nm nanocubes.
View Article and Find Full Text PDF