Publications by authors named "Grant Tarnow"

Liver-specific ten-eleven translocation (Tet) methylcytosine dioxygenases 2 and 3 (Tet2 plus Tet3)-deficient hepatitis B virus (HBV) transgenic mice fail to support viral biosynthesis. The levels of viral transcription and replication intermediates are dramatically reduced. Hepatitis B core antigen is only observed in a very limited number of pericentral hepatocytes in a pattern that is similar to glutamate-ammonia ligase (Glul), a β-catenin target gene.

View Article and Find Full Text PDF

The hepatitis B virus (HBV) transgenic mouse model was used to interrogate the origins of HCC heterogeneity. HBV biosynthesis was used as a marker of liver tumor heterogeneity. Principal component and correlation analysis of HBV and cellular transcript levels demonstrated major differences within and between the gene expression profiles of Apc-deficient, Apc-deficient Pten-deficient, and Pten-deficient HCC.

View Article and Find Full Text PDF

β-catenin regulates HBV transcription in cell culture and viral biosynthesis in vivo in the transgenic mouse model of chronic HBV infection. Therefore, it is important to understand which transcription factor activities are coactivated by β-catenin to enhance HBV biosynthesis. The effect of β-catenin expression in the context of nuclear receptor-mediated HBV transcription was evaluated initially in the human embryonic kidney cell line, HEK293T.

View Article and Find Full Text PDF

Chronic HBV infection is a major cause of hepatocellular carcinoma (HCC) worldwide. The phenotypes of HCC are diverse, in part, due to mutations in distinct oncogenes and/or tumor suppressor genes. These genetic drivers of HCC development have generally been considered as major mediators of tumor heterogeneity.

View Article and Find Full Text PDF

β-Catenin (Ctnnb1) supports high levels of liver gene expression in hepatocytes in proximity to the central vein functionally defining zone 3 of the liver lobule. This region of the liver lobule supports the highest levels of viral biosynthesis in wild-type hepatitis B virus (HBV) transgenic mice. Liver-specific β-catenin-null HBV transgenic mice exhibit a stark loss of high levels of pericentral viral biosynthesis.

View Article and Find Full Text PDF

Hepatitis B virus (HBV) transcription and replication increase progressively throughout postnatal liver development with maximal viral biosynthesis occurring at around 4 weeks of age in the HBV transgenic mouse model of chronic infection. Increasing viral biosynthesis is associated with a corresponding progressive loss of DNA methylation. The loss of DNA methylation is associated with increasing levels of 5-hydroxymethylcytosine (5hmC) residues which correlate with increased liver-enriched pioneer transcription factor Forkhead box protein A (FoxA) RNA levels, a rapid decline in postnatal liver DNA methyltransferase (Dnmt) transcripts, and a very modest reduction in ten-eleven translocation (Tet) methylcytosine dioxygenase expression.

View Article and Find Full Text PDF

Hepatitis B virus (HBV) is a major human pathogen lacking a reliable curative therapy. Current therapeutics target the viral reverse transcriptase/DNA polymerase to inhibit viral replication but generally fail to resolve chronic HBV infections. Due to the limited coding potential of the HBV genome, alternative approaches for the treatment of chronic infections are desperately needed.

View Article and Find Full Text PDF