https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&term=Grant+Scotland%5Bauthor%5D&datetype=edat&usehistory=y&retmax=1&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&WebEnv=MCID_679579cdadeb0c8bce0a40be&query_key=1&retmode=xml&retstart=-10&retmax=25&tool=pubfacts&email=info@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908 Publications by Grant Scotland | LitMetric

Publications by authors named "Grant Scotland"

Here we identify an 11-residue helical module in the unique N-terminal region of the cyclic AMP-specific phosphodiesterase PDE4A1 that determines association with phospholipid bilayers and shows a profound selectivity for interaction with phosphatidic acid (PA). This module contains a core bilayer insertion unit that is formed by two tryptophan residues, Trp(19) and Trp(20), whose orientation is optimized for bilayer insertion by the Leu(16):Val(17) pairing. Ca(2+), at submicromolar levels, interacts with Asp(21) in this module and serves to gate bilayer insertion, which is completed within 10 ms.

View Article and Find Full Text PDF

The long cyclic AMP (cAMP)-specific phosphodiesterase isoform, PDE4A5 (PDE4A subfamily isoform variant 5), when transiently expressed in COS-7 cells, was shown in subcellular fractionation studies to be associated with both membrane and cytosol fractions, with immunofluorescence analyses identifying PDE4A5 as associated both with ruffles at the cell margin and also at a distinct perinuclear localisation. Deletion of the first nine amino acids of PDE4A5 (1) ablated its ability to interact with the SH3 domain of the tyrosyl kinase, LYN; (2) reduced, but did not ablate, membrane association; and (3) disrupted the focus of PDE4A5 localisation within ruffles at the cell margin. This deleted region contained a Class I SH3 binding motif of similar sequence to those identified by screening a phage display library with the LYN-SH3 domain.

View Article and Find Full Text PDF