Front Cell Infect Microbiol
May 2024
Background: Microbial keratitis is one of the leading causes of blindness globally. An overactive immune response during an infection can exacerbate damage, causing corneal opacities and vision loss. This study aimed to identify the differentially expressed genes between corneal infection patients and healthy volunteers within the cornea and conjunctiva and elucidate the contributing pathways to these conditions' pathogenesis.
View Article and Find Full Text PDFMultiple sclerosis (MS) is a chronic neurodegenerative autoimmune disease, characterised by the demyelination of neurons in the central nervous system. Whilst it is unclear what precisely leads to MS, it is believed that genetic predisposition combined with environmental factors plays a pivotal role. It is estimated that close to half the disease risk is determined by genetic factors.
View Article and Find Full Text PDFJ Autoimmun
February 2022
To investigate the molecular mechanisms through which Epstein-Barr virus (EBV) may contribute to Systemic Lupus Erythematosus (SLE) pathogenesis, we interrogated SLE genetic risk loci for signatures of EBV infection. We first compared the gene expression profile of SLE risk genes across 459 different cell/tissue types. EBV-infected B cells (LCLs) had the strongest representation of highly expressed SLE risk genes.
View Article and Find Full Text PDFMultiple Sclerosis (MS) is a complex immune-mediated disease of the central nervous system. Treatment is based on immunomodulation, including specifically targeting B cells. B cells are the main host for the Epstein-Barr Virus (EBV), which has been described as necessary for MS development.
View Article and Find Full Text PDFBackground: Epstein-Barr virus (EBV) infection may be necessary for the development of Multiple sclerosis (MS). Earlier we had identified six MS risk loci that are co-located with binding sites for the EBV transcription factor Epstein-Barr Nuclear Antigen 2 (EBNA2) in EBV-infected B cells (lymphoblastoid cell lines - LCLs).
Methods: We used an allele-specific chromatin immunoprecipitation PCR assay to assess EBNA2 allelic preference.
Cont Lens Anterior Eye
August 2022
Purpose: To determine if there is diurnal variation in gene expression in normal healthy conjunctival cells.
Methods: Bulbar conjunctival swab samples were collected from four healthy subjects in the morning and evening of the same day. The two swab samples were taken from one eye of each participant, with a minimum of five hours gap between the two samples.
Although genetic and epidemiological evidence indicates vitamin D insufficiency contributes to multiple sclerosis (MS), and serum levels of vitamin D increase on treatment with cholecalciferol, recent metanalyses indicate that this vitamin D form does not ameliorate disease. Genetic variation in genes regulating vitamin D, and regulated by vitamin D, affect MS risk. We evaluated if the expression of vitamin D responsive MS risk genes could be used to assess vitamin D response in immune cells.
View Article and Find Full Text PDFAlthough the causes of Multiple Sclerosis (MS) still remain largely unknown, multiple lines of evidence suggest that (EBV) infection may contribute to the development of MS. Here, we aimed to identify the potential contribution of EBV-encoded and host cellular miRNAs to MS pathogenesis. We identified differentially expressed host miRNAs in EBV infected B cells (LCLs) and putative host/EBV miRNA interactions with MS risk loci.
View Article and Find Full Text PDFBackground: The mechanisms linking UV radiation and vitamin D exposure to the risk of acquiring the latitude and critical period-dependent autoimmune disease, multiple sclerosis, is unclear. We examined the effect of vitamin D on DNA methylation and DNA methylation at vitamin D receptor binding sites in adult and paediatric myeloid cells. This was accomplished through differentiating CD34+ haematopoietic progenitors into CD14+ mononuclear phagocytes, in the presence and absence of calcitriol.
View Article and Find Full Text PDFMol Nutr Food Res
December 2020
DNA methylation is increasingly being recognized as a mechanism through which environmental exposures confer disease risk. Several studies have examined the association between vitamin D and changes in DNA methylation in areas as diverse as human and animal development, genomic stability, chronic disease risk, and malignancy. In many cases, they have demonstrated clear associations between vitamin D and DNA methylation in candidate disease pathways.
View Article and Find Full Text PDFMultiple lines of evidence indicate Multiple Sclerosis (MS) is affected by vitamin D. This effect may be mediated by methylation in immune cell progenitors. We aimed to determine (1) if haematopoietic stem cell methylation constrains methylation in daughter cells and is variable between individuals, and (2) the interaction of methylation with the vitamin D receptor binding sites.
View Article and Find Full Text PDFObjective: Vaccination against hepatitis B virus (HBV) confers protection from subsequent infection through immunological memory that is traditionally considered the domain of the adaptive immune system. This view has been challenged following the identification of antigen-specific memory natural killer cells (mNKs) in mice and non-human primates. While the presence of mNKs has been suggested in humans based on the expansion of NK cells following pathogen exposure, evidence regarding antigen-specificity is lacking.
View Article and Find Full Text PDFTranslating the findings of genome wide association studies (GWAS) to new therapies requires identification of the relevant immunological contexts to interrogate for genetic effects. In one of the largest GWAS, more than 200 risk loci have been identified for Multiple Sclerosis (MS) susceptibility. Infection with Epstein-Barr virus (EBV) appears to be necessary for the development of Multiple Sclerosis (MS).
View Article and Find Full Text PDFEpstein-Barr Virus (EBV) infection appears to be necessary for the development of Multiple Sclerosis (MS), although the specific mechanisms are unknown. More than 200 single-nucleotide polymorphisms (SNPs) are known to be associated with the risk of developing MS. About a quarter of these are also highly associated with proximal gene expression in B cells infected with EBV (lymphoblastoid cell lines-LCLs).
View Article and Find Full Text PDFSevere influenza infection has no effective treatment available. One of the key barriers to developing host-directed therapy is a lack of reliable prognostic factors needed to guide such therapy. Here, we use a network analysis approach to identify host factors associated with severe influenza and fatal outcome.
View Article and Find Full Text PDFBackground: Genome wide association studies have identified > 200 susceptibility loci accounting for much of the heritability of multiple sclerosis (MS). Epstein-Barr virus (EBV), a memory B cell tropic virus, has been identified as necessary but not sufficient for development of MS. The molecular and immunological basis for this has not been established.
View Article and Find Full Text PDFEpidemiological, molecular and genetic studies have indicated that high serum vitamin D levels are associated with lower risk of several autoimmune diseases. The vitamin D receptor (VDR) binding sites in monocytes and dendritic cells (DCs) are more common in risk genes for diseases with latitude dependence than in risk genes for other diseases. The transcription factor genes Zinc finger MIZ domain-containing protein 1 (ZMIZ1) and interferon regulatory factor 8 (IRF8)-risk genes for many of these diseases-have VDR binding peaks co-incident with the risk single nucleotide polymorphisms (SNPs).
View Article and Find Full Text PDFObjectives: To find and validate generalizable sepsis subtypes using data-driven clustering.
Design: We used advanced informatics techniques to pool data from 14 bacterial sepsis transcriptomic datasets from eight different countries (n = 700).
Setting: Retrospective analysis.
Improved risk stratification and prognosis prediction in sepsis is a critical unmet need. Clinical severity scores and available assays such as blood lactate reflect global illness severity with suboptimal performance, and do not specifically reveal the underlying dysregulation of sepsis. Here, we present prognostic models for 30-day mortality generated independently by three scientific groups by using 12 discovery cohorts containing transcriptomic data collected from primarily community-onset sepsis patients.
View Article and Find Full Text PDFThe G protein-coupled receptor 65 (GPR65) gene has been genetically associated with several autoimmune diseases, including multiple sclerosis (MS). GPR65 is predominantly expressed in lymphoid organs and is activated by extracellular protons. In this study, we tested whether GPR65 plays a functional role in demyelinating autoimmune disease.
View Article and Find Full Text PDFHost response biomarkers can accurately distinguish between influenza and bacterial infection. However, published biomarkers require the measurement of many genes, thereby making it difficult to implement them in clinical practice. This study aims to identify a single-gene biomarker with a high diagnostic accuracy equivalent to multi-gene biomarkers.
View Article and Find Full Text PDFMultiple sclerosis (MS) is known to be a partially heritable autoimmune disease. The risk of developing MS increases from typically 1 in 1,000 in the normal population to 1 in 4 or so for identical twins where one twin is affected. Much of this heritability is now explained and is due almost entirely to genes affecting the immune response.
View Article and Find Full Text PDFIntensive Care Med Exp
December 2016
Background: Critical illness causes a shift away from mitochondrial metabolism towards a greater dependence on glycolysis. This metabolic shift is thought to be associated with lactic acidosis, organ dysfunction and poor clinical outcomes. The current paradigm is that low oxygen supply causes regional hypoxia, which in turn drives such a metabolic shift.
View Article and Find Full Text PDFA promising new avenue of MS research that may lead to a better understanding of pathogenesis, progression and therapeutic response, and to development of new therapies, comes from the recent identification of defined immune cell populations that are highly heritable. Such stable populations have been identified in three recent papers using extensive flow cytometric panels to investigate twin and family cohorts. They showed that while most of the variation in immune cell populations between individuals was not heritable, some was.
View Article and Find Full Text PDF