Publications by authors named "Grant J Scott"

Background: The global obesity epidemic demands innovative approaches to understand its complex environmental and social determinants. Spatial technologies, such as geographic information systems, remote sensing, and spatial machine learning, offer new insights into this health issue. This study uses deep learning and spatial modeling to predict obesity rates for census tracts in Missouri.

View Article and Find Full Text PDF

This research study investigates and predicts the obesity prevalence in Missouri, utilizing deep neural visual features extracted from medium-resolution satellite imagery (Sentinel-2). By applying a deep convolutional neural network (DCNN), the study aims to predict the obesity rate of census tracts based on visual features in the satellite imagery that covers each tract. The study utilizes Sentinel-2 satellite images, processed using the ResNet-50 DCNN, to extract deep neural visual features (DNVF).

View Article and Find Full Text PDF

The COVID-19 pandemic has had a deep influence on American life in general and on the American economy in particular. However, the burden of the pandemic has not been distributed equally among members of a population based on their social-determinants-of-health. The purpose of this study was to investigate whether the median income was associated with COVID-19 total number of tests and positivity rate in Boone County, Missouri during the pandemic.

View Article and Find Full Text PDF

Falls significantly affect the health of older adults. Injuries sustained through falls have long-term consequences on the ability to live independently and age in place, and are the leading cause of injury death in the United States for seniors. Early fall risk detection provides an important opportunity for prospective intervention by healthcare providers and home caregivers.

View Article and Find Full Text PDF

Shortness of breath is often considered a repercussion of aging in older adults, as respiratory illnesses like COPD or respiratory illnesses due to heart-related issues are often misdiagnosed, under-diagnosed or ignored at early stages. Continuous health monitoring using ambient sensors has the potential to ameliorate this problem for older adults at aging-in-place facilities. In this paper, we leverage continuous respiratory health data collected by using ambient hydraulic bed sensors installed in the apartments of older adults in aging-in-place Americare facilities to find data-adaptive indicators related to shortness of breath.

View Article and Find Full Text PDF

Too often, the testing and evaluation of object detection, as well as the classification techniques for high-resolution remote sensing imagery, are confined to clean, discretely partitioned datasets, i.e., the closed-world model.

View Article and Find Full Text PDF

The COVID-19 pandemic has had deep influence on American life. However, the burden of the pandemic has not been distributed equally among members of a population based on their demographic features. The purpose of this study was to investigate whether sex, age, race, and religion were associated with COVID-19 positivity rates in Boone County, Missouri over a 22-month period (March 15, 2020 to December 2, 2021) of the pandemic.

View Article and Find Full Text PDF

Remote sensing (RS), satellite imaging (SI), and geospatial analysis have established themselves as extremely useful and very diverse domains for research associated with space, spatio-temporal components, and geography. We evaluated in this review the existing evidence on the application of those geospatial techniques, tools, and methods in the coronavirus pandemic. We reviewed and retrieved nine research studies that directly used geospatial techniques, remote sensing, or satellite imaging as part of their research analysis.

View Article and Find Full Text PDF

With the enormous amount of data collected by unobtrusive sensors, the potential of utilizing these data and applying various multi-modal advanced analytics on them is numerous and promising. However, taking advantage of the ever-growing data requires high-performance data-handling systems to enable high data scalability and easy data accessibility. This paper demonstrates robust design, developments, and techniques of a hierarchical time-indexed database for decision support systems leveraging irregular and sporadic time series data from sensor systems, e.

View Article and Find Full Text PDF

The Center for Eldercare and Rehabilitation Technology, at University of Missouri, has researched the use of smart, unobtrusive sensors for older adult residents' health monitoring and alerting in aging-in-place communities for many years. Sensors placed in the apartments of older adult residents generate a deluge of daily data that is automatically aggregated, analyzed, and summarized to aid in health awareness, clinical care, and research for healthy aging. When anomalies or concerning trends are detected within the data, the sensor information is converted into linguistic health messages using fuzzy computational techniques, so as to make it understandable to the clinicians.

View Article and Find Full Text PDF

While most deep learning architectures are built on convolution, alternative foundations such as morphology are being explored for purposes such as interpretability and its connection to the analysis and processing of geometric structures. The morphological hit-or-miss operation has the advantage that it considers both foreground information and background information when evaluating the target shape in an image. In this article, we identify limitations in the existing hit-or-miss neural definitions and formulate an optimization problem to learn the transform relative to deeper architectures.

View Article and Find Full Text PDF

Searching for relevant knowledge across heterogeneous geospatial databases requires an extensive knowledge of the semantic meaning of images, a keen eye for visual patterns, and efficient strategies for collecting and analyzing data with minimal human intervention. In this paper, we present our recently developed content-based multimodal Geospatial Information Retrieval and Indexing System (GeoIRIS) which includes automatic feature extraction, visual content mining from large-scale image databases, and high-dimensional database indexing for fast retrieval. Using these underpinnings, we have developed techniques for complex queries that merge information from heterogeneous geospatial databases, retrievals of objects based on shape and visual characteristics, analysis of multiobject relationships for the retrieval of objects in specific spatial configurations, and semantic models to link low-level image features with high-level visual descriptors.

View Article and Find Full Text PDF