Publications by authors named "Grant J Mathews"

Multicomponent relativistic fluids have been studied for decades. However, simulating the dynamics of the particles and fluids in such a mixture has been a challenge due to the fact that such simulations are computationally expensive in three spatial dimensions. Here, we report on the development and application of a multidimensional relativistic Monte Carlo code to explore the thermalization process in a relativistic multicomponent environment in a computationally inexpensive way.

View Article and Find Full Text PDF

The isotope ^{98}Tc decays to ^{98}Ru with a half-life of 4.2×10^{6}   yr and could have been present in the early Solar System. In this Letter, we report on the first calculations of the production of ^{98}Tc by neutrino-induced reactions in core-collapse supernovae (the ν process).

View Article and Find Full Text PDF

Current models for the r process are summarized with an emphasis on the key constraints from both nuclear physics measurements and astronomical observations. In particular, we analyze the importance of nuclear physics input such as beta-decay rates; nuclear masses; neutron-capture cross sections; beta-delayed neutron emission; probability of spontaneous fission, beta- and neutron-induced fission, fission fragment mass distributions; neutrino-induced reaction cross sections, etc. We highlight the effects on models for r-process nucleosynthesis of newly measured β-decay half-lives, masses, and spectroscopy of neutron-rich nuclei near the r-process path.

View Article and Find Full Text PDF

The primordial abundances of light elements produced in the standard theory of Big Bang nucleosynthesis (BBN) depend only on the cosmic ratio of baryons to photons, a quantity inferred from observations of the microwave background. The predicted primordial (7)Li abundance is four times that measured in the atmospheres of Galactic halo stars. This discrepancy could be caused by modification of surface lithium abundances during the stars' lifetimes or by physics beyond the Standard Model that affects early nucleosynthesis.

View Article and Find Full Text PDF

We show that the synthesis of (25,26)Mg at the base of the convective envelope in low-metallicity asymptotic giant branch stars can produce the isotopic ratios needed to explain the low-z subset (with z<1.8) of the many-multiplet data from quasar absorption systems without invoking a time variation of the fine structure constant. This is supported by observations of high abundances of the neutron-rich Mg isotopes in metal-poor globular-cluster stars.

View Article and Find Full Text PDF