Publications by authors named "Grant D Andersen"

The immunological signatures driving the severity of coronavirus disease 19 (COVID-19) in Ghanaians remain poorly understood. We performed bulk transcriptome sequencing of nasopharyngeal samples from severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-infected Ghanaians with mild and severe COVID-19, as well as healthy controls to characterize immune signatures at the primary SARS-CoV-2 infection site and identify drivers of disease severity. Generally, a heightened antiviral response was observed in SARS-CoV-2-infected Ghanaians compared with uninfected controls.

View Article and Find Full Text PDF

Infection with Lassa virus (LASV) can cause Lassa fever, a haemorrhagic illness with an estimated fatality rate of 29.7%, but causes no or mild symptoms in many individuals. Here, to investigate whether human genetic variation underlies the heterogeneity of LASV infection, we carried out genome-wide association studies (GWAS) as well as seroprevalence surveys, human leukocyte antigen typing and high-throughput variant functional characterization assays.

View Article and Find Full Text PDF
Article Synopsis
  • * A study conducted in Sierra Leone between November 2018 and July 2019 involved trapping small mammals and using tests to detect Lassa virus (LASV) antigens and antibodies in order to understand the virus's prevalence in the area.
  • * Out of 373 rodents tested, 20% were positive for the LASV antigen, while 11% showed the presence of antibodies, indicating that the tools developed could enhance public health efforts in tracking and managing Lassa fever outbreaks.
View Article and Find Full Text PDF

Lassa fever is a severe viral hemorrhagic fever caused by a zoonotic virus that repeatedly spills over to humans from its rodent reservoirs. It is currently not known how climate and land use changes could affect the endemic area of this virus, currently limited to parts of West Africa. By exploring the environmental data associated with virus occurrence using ecological niche modelling, we show how temperature, precipitation and the presence of pastures determine ecological suitability for virus circulation.

View Article and Find Full Text PDF

Many countries in sub-Saharan Africa have experienced lower COVID-19 caseloads and fewer deaths than countries in other regions worldwide. Under-reporting of cases and a younger population could partly account for these differences, but pre-existing immunity to coronaviruses is another potential factor. Blood samples from Sierra Leonean Lassa fever and Ebola survivors and their contacts collected before the first reported COVID-19 cases were assessed using enzyme-linked immunosorbent assays for the presence of antibodies binding to proteins of coronaviruses that infect humans.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers found that the LARGE gene is crucial for how Lassa virus binds and enters human cells, linking it to natural selection in populations in Nigeria, particularly the Yoruba.
  • They suggest that the rise of diseases like Lassa fever is more about increased detection capabilities than the emergence of new viruses, indicating humans may have been exposed to these pathogens for longer than thought.
  • This groundwork inspired the Sentinel project, aimed at early detection and characterization of pathogens globally through its core strategies of detection, information sharing, and empowering public health systems to enhance pandemic preparedness.
View Article and Find Full Text PDF

Protective Ebola virus (EBOV) antibodies have neutralizing activity and induction of antibody constant domain (Fc)-mediated innate immune effector functions. Efforts to enhance Fc effector functionality often focus on maximizing antibody-dependent cellular cytotoxicity, yet distinct combinations of functions could be critical for antibody-mediated protection. As neutralizing antibodies have been cloned from EBOV disease survivors, we sought to identify survivor Fc effector profiles to help guide Fc optimization strategies.

View Article and Find Full Text PDF

Early and robust T cell responses have been associated with survival from Lassa fever (LF), but the Lassa virus-specific memory responses have not been well characterized. Regions within the virus surface glycoprotein (GPC) and nucleoprotein (NP) are the main targets of the Lassa virus-specific T cell responses, but, to date, only a few T cell epitopes within these proteins have been identified. We identified GPC and NP regions containing T cell epitopes and HLA haplotypes from LF survivors and used predictive HLA-binding algorithms to identify putative epitopes, which were then experimentally tested using autologous survivor samples.

View Article and Find Full Text PDF
Article Synopsis
  • * Current vaccine efforts mostly focus on lineage IV antigens found in Sierra Leone, Liberia, and Guinea but overlook other lineages present in Nigeria.
  • * Research shows that survivors of Lassa fever from Nigeria have T cells that can react to lineage IV antigens, indicating potential for cross-protection and guiding future vaccine design to cover all virus lineages effectively.
View Article and Find Full Text PDF

Monoclonal antibodies can mediate protection against Ebola virus (EBOV) infection through direct neutralization as well as through the recruitment of innate immune effector functions. However, the antibody functional response following survival of acute EBOV disease has not been well characterized. In this study, serum antibodies from Ebola virus disease (EVD) survivors from Sierra Leone were profiled to capture variation in overall subclass/isotype abundance, neutralizing activity, and innate immune effector functions.

View Article and Find Full Text PDF

The recent Ebola epidemic exemplified the importance of understanding and controlling emerging infections. Despite the importance of T cells in clearing virus during acute infection, little is known about Ebola-specific CD8 T cell responses. We investigated immune responses of individuals infected with Ebola virus (EBOV) during the 2013-2016 West Africa epidemic in Sierra Leone, where the majority of the >28,000 EBOV disease (EVD) cases occurred.

View Article and Find Full Text PDF

Lassa fever, a hemorrhagic fever caused by Lassa virus (LASV), is endemic in West Africa. It is difficult to distinguish febrile illnesses that are common in West Africa from Lassa fever based solely on a patient's clinical presentation. The field performance of recombinant antigen-based Lassa fever immunoassays was compared to that of quantitative polymerase chain assays (qPCRs) using samples from subjects meeting the case definition of Lassa fever presenting to Kenema Government Hospital in Sierra Leone.

View Article and Find Full Text PDF

The 2013-2016 West African epidemic caused by the Ebola virus was of unprecedented magnitude, duration and impact. Here we reconstruct the dispersal, proliferation and decline of Ebola virus throughout the region by analysing 1,610 Ebola virus genomes, which represent over 5% of the known cases. We test the association of geography, climate and demography with viral movement among administrative regions, inferring a classic 'gravity' model, with intense dispersal between larger and closer populations.

View Article and Find Full Text PDF

Background: Kenema Government Hospital (KGH) has developed an advanced clinical and laboratory research capacity to manage the threat of Lassa fever, a viral hemorrhagic fever (VHF). The 2013-2016 Ebola virus (EBOV) disease (EVD) outbreak is the first to have occurred in an area close to a facility with established clinical and laboratory capacity for study of VHFs.

Methods: Because of its proximity to the epicenter of the EVD outbreak, which began in Guinea in March 2014, the KGH Lassa fever Team mobilized to establish EBOV surveillance and diagnostic capabilities.

View Article and Find Full Text PDF

Recent infectious disease epidemics illustrate how health systems failures anywhere can create disease vulnerabilities everywhere. We must therefore prioritize investments in health care infrastructure in outbreak-prone regions of the world. We describe how "rooted" research collaborations can establish capacity for pathogen surveillance and facilitate rapid outbreak responses.

View Article and Find Full Text PDF

Lassa fever is a severe multisystem disease that often has haemorrhagic manifestations. The epitopes of the Lassa virus (LASV) surface glycoproteins recognized by naturally infected human hosts have not been identified or characterized. Here we have cloned 113 human monoclonal antibodies (mAbs) specific for LASV glycoproteins from memory B cells of Lassa fever survivors from West Africa.

View Article and Find Full Text PDF

The 2013-2015 West African epidemic of Ebola virus disease (EVD) reminds us of how little is known about biosafety level 4 viruses. Like Ebola virus, Lassa virus (LASV) can cause hemorrhagic fever with high case fatality rates. We generated a genomic catalog of almost 200 LASV sequences from clinical and rodent reservoir samples.

View Article and Find Full Text PDF

Lassa fever (LF) is a severe viral hemorrhagic fever caused by Lassa virus (LASV). The LF program at the Kenema Government Hospital (KGH) in Eastern Sierra Leone currently provides diagnostic services and clinical care for more than 500 suspected LF cases per year. Nearly two-thirds of suspected LF patients presenting to the LF Ward test negative for either LASV antigen or anti-LASV immunoglobulin M (IgM), and therefore are considered to have a non-Lassa febrile illness (NLFI).

View Article and Find Full Text PDF

We have developed a robust RNA sequencing method for generating complete de novo assemblies with intra-host variant calls of Lassa and Ebola virus genomes in clinical and biological samples. Our method uses targeted RNase H-based digestion to remove contaminating poly(rA) carrier and ribosomal RNA. This depletion step improves both the quality of data and quantity of informative reads in unbiased total RNA sequencing libraries.

View Article and Find Full Text PDF

Background: Limited clinical and laboratory data are available on patients with Ebola virus disease (EVD). The Kenema Government Hospital in Sierra Leone, which had an existing infrastructure for research regarding viral hemorrhagic fever, has received and cared for patients with EVD since the beginning of the outbreak in Sierra Leone in May 2014.

Methods: We reviewed available epidemiologic, clinical, and laboratory records of patients in whom EVD was diagnosed between May 25 and June 18, 2014.

View Article and Find Full Text PDF

In its largest outbreak, Ebola virus disease is spreading through Guinea, Liberia, Sierra Leone, and Nigeria. We sequenced 99 Ebola virus genomes from 78 patients in Sierra Leone to ~2000× coverage. We observed a rapid accumulation of interhost and intrahost genetic variation, allowing us to characterize patterns of viral transmission over the initial weeks of the epidemic.

View Article and Find Full Text PDF

Background: Lassa fever (LF), an often-fatal hemorrhagic disease caused by Lassa virus (LASV), is a major public health threat in West Africa. When the violent civil conflict in Sierra Leone (1991 to 2002) ended, an international consortium assisted in restoration of the LF program at Kenema Government Hospital (KGH) in an area with the world's highest incidence of the disease.

Methodology/principal Findings: Clinical and laboratory records of patients presenting to the KGH Lassa Ward in the post-conflict period were organized electronically.

View Article and Find Full Text PDF

Lassa fever (LF) is a devastating viral disease prevalent in West Africa. Efforts to take on this public health crisis have been hindered by lack of infrastructure and rapid field deployable diagnosis in areas where the disease is prevalent. Recent capacity building at the Kenema Government Hospital Lassa Fever Ward (KGH LFW) in Sierra Leone has lead to a major turning point in the diagnosis, treatment and study of LF.

View Article and Find Full Text PDF

The Sudbury Neutrino Observatory (SNO) has measured day and night solar neutrino energy spectra and rates. For charged current events, assuming an undistorted 8B spectrum, the night minus day rate is 14.0%+/-6.

View Article and Find Full Text PDF