Publications by authors named "Grant C Bullock"

Myeloid cells, such as neutrophils, are produced in the bone marrow in high quantities and are important in the pathogenesis of vascular diseases such as pulmonary hypertension (PH). Although neutrophil recruitment into sites of inflammation has been well studied, the mechanisms of neutrophil egress from the bone marrow are not well understood. Using computational flow cytometry, we observed increased neutrophils in the lungs of patients and mice with PH.

View Article and Find Full Text PDF

Patients with insulin resistance have high risk of cardiovascular disease such as myocardial infarction (MI). However, it is not known whether MI can initiate or aggravate insulin resistance. We observed that patients with ST-elevation MI and mice with MI had de novo hyperglycemia and features of insulin resistance, respectively.

View Article and Find Full Text PDF

Erythropoiesis in the bone marrow and spleen depends on intricate interactions between the resident macrophages and erythroblasts. Our study focuses on identifying the role of nuclear factor erythroid 2-related factor 2 (Nrf2) during recovery from stress erythropoiesis. To that end, we induced stress erythropoiesis in Nrf2 and Nrf2-null mice and evaluated macrophage subsets known to support erythropoiesis and erythroid cell populations.

View Article and Find Full Text PDF

Haemolysis is a major feature of sickle cell disease (SCD) that contributes to organ damage. It is well established that haem, a product of haemolysis, induces expression of the enzyme that degrades it, haem oxygenase-1 (HMOX1). We have also shown that haem induces expression of placental growth factor (PGF), but the organ specificity of these responses has not been well-defined.

View Article and Find Full Text PDF

Objectives: T-cell receptor (TCR) gene rearrangement studies are widely used for assessing T-cell clonality. The frequency and significance of clonal peaks restricted to TCR β (TCRB) tube C are uncertain. We retrospectively reviewed 80 TCR studies performed on bone marrow/peripheral blood.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers tested the effects of the small-molecule sGC activator BAY 54-6544 compared to other treatments on right ventricular (RV) pressure and hypertrophy in mice with SCD, finding that BAY 54-6544 was significantly more effective.
  • The study shows that BAY 54-6544 improves the response of pulmonary arteries to nitric oxide and suggests its potential as a novel treatment for complications related to SCD, particularly pulmonary arterial hypertension and heart remodeling.
View Article and Find Full Text PDF

Thrombosis and inflammation are intricately linked in several major clinical disorders, including disseminated intravascular coagulation and acute ischemic events. The damage-associated molecular pattern molecule high-mobility group box 1 (HMGB1) is upregulated by activated platelets in multiple inflammatory diseases; however, the contribution of platelet-derived HMGB1 in thrombosis remains unexplored. Here, we generated transgenic mice with platelet-specific ablation of HMGB1 and determined that platelet-derived HMGB1 is a critical mediator of thrombosis.

View Article and Find Full Text PDF

Background: Mycosis fungoides (MF) is the most common primary cutaneous T-cell lymphoma (CTCL), followed by CD30+ lymphoproliferative disorders, including lymphomatoid papulosis (LyP) and primary cutaneous anaplastic large cell lymphoma (pcALCL). The objective was to report on a series of patients with different types of CTCL at different times in their clinical course, with a focus on clonality studies.

Methods: Four patients with multiple diagnoses of CTCLs were identified.

View Article and Find Full Text PDF

The unique sensitivity of early red cell progenitors to iron deprivation, known as the erythroid iron restriction response, serves as a basis for human anemias globally. This response impairs erythropoietin-driven erythropoiesis and underlies erythropoietic repression in iron deficiency anemia. Mechanistically, the erythroid iron restriction response results from inactivation of aconitase enzymes and can be suppressed by providing the aconitase product isocitrate.

View Article and Find Full Text PDF

In red cell development, the differentiation program directed by the transcriptional regulator GATA1 requires signaling by the cytokine erythropoietin, but the mechanistic basis for this signaling requirement has remained unknown. Here we show that erythropoietin regulates GATA1 through protein kinase D activation, promoting histone deacetylase 5 (HDAC5) dissociation from GATA1, and subsequent GATA1 acetylation. Mice deficient for HDAC5 show resistance to anemic challenge and altered marrow responsiveness to erythropoietin injections.

View Article and Find Full Text PDF

Background: Erythroid development requires the action of erythropoietin (EPO) on committed progenitors to match red cell output to demand. In this process, iron acts as a critical cofactor, with iron deficiency blunting EPO-responsiveness of erythroid progenitors. Aconitase enzymes have recently been identified as possible signal integration elements that couple erythropoiesis with iron availability.

View Article and Find Full Text PDF

Posttransplantation lymphoproliferative disorders (PTLD) are heterogeneous lesions with variable morphology, immunophenotype, and molecular characteristics. Multiple distinct primary lesions can occur in PTLD, rarely with both B-cell and T-cell characteristics. Lesions can involve both grafted organs and other sites; however, PTLD involving the pituitary gland has not been previously reported.

View Article and Find Full Text PDF

Human red cell differentiation requires the action of erythropoietin on committed progenitor cells. In iron deficiency, committed erythroid progenitors lose responsiveness to erythropoietin, resulting in hypoplastic anemia. To address the basis for iron regulation of erythropoiesis, we established primary hematopoietic cultures with transferrin saturation levels that restricted erythropoiesis but permitted granulopoiesis and megakaryopoiesis.

View Article and Find Full Text PDF

The transcription factor GATA-1 participates in programming the differentiation of multiple hematopoietic lineages. In megakaryopoiesis, loss of GATA-1 function produces complex developmental abnormalities and underlies the pathogenesis of megakaryocytic leukemia in Down syndrome. Its distinct functions in megakaryocyte and erythroid maturation remain incompletely understood.

View Article and Find Full Text PDF

Background: The genotype of hepatitis C virus (HCV) is a predictor of antiviral therapeutic response. We describe an approach for HCV genotype determination by real-time PCR and melting curve analysis.

Methods: After automated nucleic acid extraction, we used reverse transcription-PCR in a block cycler to amplify nucleotides 6-329 of the 5'-untranslated region of HCV.

View Article and Find Full Text PDF

The viral US3 and US6 gene products of human cytomegalovirus (CMV) are sequentially expressed at immediate-early and early times after infection, respectively. They downregulate the surface expression of HLA class I molecules. There are two repeat-containing regulatory regions between the US3 promoter and the US6 transcription unit designated R1 and R2.

View Article and Find Full Text PDF