Publications by authors named "Grant Bromhal"

Oil and gas wells with compromised integrity are a concern because they can potentially leak hydrocarbons or other fluids into groundwater and/or the atmosphere. Most states in the United States require some form of integrity testing, but few jurisdictions mandate widespread testing and open reporting on a scale informative for leakage risk assessment. In this study, we searched 33 US state oil and gas regulatory agency databases and identified records useful for evaluating well integrity in Colorado, New Mexico, and Pennsylvania.

View Article and Find Full Text PDF

This work uses probabilistic methods to simulate a hypothetical geologic CO2 storage site in a depleted oil and gas field, where the large number of legacy wells would make it cost-prohibitive to sample all wells for all measurements as part of the postinjection site care. Deep well leakage potential scores were assigned to the wells using a random subsample of 100 wells from a detailed study of 826 legacy wells that penetrate the basal Cambrian formation on the U.S.

View Article and Find Full Text PDF

Potential natural gas leakage into shallow, overlying formations and aquifers from Marcellus Shale gas drilling operations is a public concern. However, before natural gas could reach underground sources of drinking water (USDW), it must pass through several geologic formations. Tracer and pressure monitoring in formations overlying the Marcellus could help detect natural gas leakage at hydraulic fracturing sites before it reaches USDW.

View Article and Find Full Text PDF

Geochemical reactions may alter the permeability of leakage pathways in caprocks, which serve a critical role in confining CO in geologic carbon sequestration. A caprock specimen from a carbonate formation in the Michigan sedimentary Basin was fractured and studied in a high-pressure core flow experiment. Inflowing brine was saturated with CO at 40°C and 10 MPa, resulting in an initial pH of 4.

View Article and Find Full Text PDF

A methodology is developed for predicting the performance of near-surface CO(2) leak detection systems at geologic sequestration sites. The methodology integrates site characterization and modeling to predict the statistical properties of natural CO(2) fluxes, the transport of CO(2) from potential subsurface leakage points, and the detection of CO(2) surface fluxes by the monitoring network. The probability of leak detection is computed as the probability that the leakage signal is sufficient to increase the total flux beyond a statistically determined threshold.

View Article and Find Full Text PDF

Using our standard pore-level model, we have extended our earlier study of the crossover from fractal viscous fingering to compact /linear flow at a characteristic crossover time, tau , in three dimensions to systems with as many as a 10(6) pore bodies. These larger systems enable us to investigate the flows in the fully compact/well-past-crossover regime. The center of mass of the injected fluid exhibits basically the same behavior as found earlier but with an improved characteristic time.

View Article and Find Full Text PDF

Using a standard pore-level model, which includes both viscous and capillary forces, we have studied the injection of a viscous, nonwetting fluid into a two-dimensional porous medium saturated with a less viscous, wetting fluid, i.e., drainage with favorable viscosity ratios, M> or =1 .

View Article and Find Full Text PDF

It had been predicted that the capillary fingering observed at small capillary numbers should change or cross over to compact invasion at larger capillary numbers or longer times [D. Wilkinson, Phys. Rev.

View Article and Find Full Text PDF

Invasion percolation with trapping (IPT) and diffusion-limited aggregation (DLA) are simple fractal models, which are known to describe two-phase flow in porous media at well defined, but unphysical limits of the fluid properties and flow conditions. A decade ago, Fernandez, Rangel, and Rivero predicted a crossover from IPT (capillary fingering) to DLA (viscous fingering) for the injection of a zero-viscosity fluid as the injection velocity was increased from zero. [Phys.

View Article and Find Full Text PDF

A pore-level model of drainage, which has been quantitatively validated, is used to study the effect of increased injection rate (i.e., increased capillary number) upon the flow, with matched-viscosity fluids.

View Article and Find Full Text PDF