Publications by authors named "Granath G"

Premise: We assessed changes in traits associated with water economy across climatic gradients in the ecologically similar peat mosses Sphagnum cuspidatum and Sphagnum lindbergii. These species have parapatric distributions in Europe and have similar niches in bogs. Sphagnum species of bogs are closely related, with a large degree of microhabitat niche overlap between many species that can be functionally very similar.

View Article and Find Full Text PDF

Changes in fire regime of boreal forests in response to climate warming are expected to impact postfire recovery. However, quantitative data on how managed forests sustain and recover from recent fire disturbance are limited.Two years after a large wildfire in managed even-aged boreal forests in Sweden, we investigated how recovery of aboveground and belowground communities, that is, understory vegetation and soil microbial and faunal communities, responded to variation in the severity of soil (i.

View Article and Find Full Text PDF

Madagascar is known for its high endemism and as many as 90% of this unique diversity are forest-dwellers. Unfortunately, the forest cover of Madagascar is decreasing at an alarming rate. This decrease can also affect aquatic insects, but our knowledge on aquatic insect diversity and distribution on Madagascar are limited.

View Article and Find Full Text PDF

We present 49 metagenome assemblies of the microbiome associated with (peat moss) collected from ambient, artificially warmed, and geothermally warmed conditions across Europe. These data will enable further research regarding the impact of climate change on plant-microbe symbiosis, ecology, and ecosystem functioning of northern peatland ecosystems.

View Article and Find Full Text PDF

Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors.

View Article and Find Full Text PDF

Increased frequency and new types of disturbances caused by global change calls for deepened insights into possible alterations of successional pathways. Despite current interest in disturbance interactions there is a striking lack of studies focusing on the implication of decreasing times between disturbances. We surveyed forest-floor vegetation (vascular plants and bryophytes) in a Pinus sylvestris-dominated, even-aged production forest landscape, unique because of the presence of stands under a precisely dated disturbance interval gradient, ranging from 0 to 123 yr between clearcutting and a subsequent megafire.

View Article and Find Full Text PDF

Background And Aims: The ecosystem engineers Sphagnum (peat mosses) are responsible for sequestering a large proportion of carbon in northern peatlands. Species may respond differently to hydrological changes, and water level changes may lead to vegetation shifts in peatlands, causing them to revert from sinks to sources of carbon. We aimed to compare species-specific responses to water level drawdown within Sphagnum, and investigate which traits affect water economy in this genus.

View Article and Find Full Text PDF

The representation of carbon-nitrogen (N) interactions in global models of the natural or managed land surface remains an important knowledge gap. To improve global process-based models we require a better understanding of how N limitation affects photosynthesis and plant growth. Here we present the findings of a meta-analysis to quantitatively assess the impact of N limitation on source (photosynthate production) versus sink (photosynthate use) activity, based on 77 highly controlled experimental N availability studies on 11 crop species.

View Article and Find Full Text PDF

Recent studies show that soil eukaryotic diversity is immense and dominated by micro-organisms. However, it is unclear to what extent the processes that shape the distribution of diversity in plants and animals also apply to micro-organisms. Major diversification events in multicellular organisms have often been attributed to long-term climatic and geological processes, but the impact of such processes on protist diversity has received much less attention as their distribution has often been believed to be largely cosmopolitan.

View Article and Find Full Text PDF

Grazing can induce changes in both plant productivity and nutritional quality, which may subsequently influence herbivore carrying capacity. While research on Soay sheep (Ovis aries L.) dynamics on Hirta Island in the St.

View Article and Find Full Text PDF

Prescribed fires are a common nature conservation practice. They are executed by several parties with limited coordination among them, and little consideration for wildfire occurrences and habitat requirements of fire-dependent species. Here, we gathered data on prescribed fires and wildfires in Sweden during 2011-2015 to (i) evaluate the importance and spatial extent of prescribed fires compared to wildfires and (ii) illustrate how a database can be used as a management tool for prescribed fires.

View Article and Find Full Text PDF

Considerable progress has been made in ecological and evolutionary genetics with studies demonstrating how genes underlying plant and microbial traits can influence adaptation and even 'extend' to influence community structure and ecosystem level processes. Progress in this area is limited to model systems with deep genetic and genomic resources that often have negligible ecological impact or interest. Thus, important linkages between genetic adaptations and their consequences at organismal and ecological scales are often lacking.

View Article and Find Full Text PDF

Understanding the stability of the G matrix in natural populations is fundamental for predicting evolutionary trajectories; yet, the extent of its spatial variation and how this impacts responses to selection remain open questions. With a nested paternal half-sib crossing design and plants grown in a field experiment, we examined differences in the genetic architecture of flowering time, floral display, and plant size among four Scandinavian populations of Arabidopsis lyrata. Using a multivariate Bayesian framework, we compared the size, shape, and orientation of G matrices and assessed their potential to facilitate or constrain trait evolution.

View Article and Find Full Text PDF

Northern peatlands can emit large amounts of carbon and harmful smoke pollution during a wildfire. Of particular concern are drained and mined peatlands, where management practices destabilize an array of ecohydrological feedbacks, moss traits and peat properties that moderate water and carbon losses in natural peatlands. Our results demonstrate that drained and mined peatlands in Canada and northern Europe can experience catastrophic deep burns (>200 t C ha(-1) emitted) under current weather conditions.

View Article and Find Full Text PDF

Peat mosses (Sphagnum) largely govern carbon sequestration in Northern Hemisphere peatlands. We investigated functional traits related to growth and decomposition in Sphagnum species. We tested the importance of environment and phylogeny in driving species traits and investigated trade-offs among them.

View Article and Find Full Text PDF

Peat mosses (Sphagnum) are ecosystem engineers-species in boreal peatlands simultaneously create and inhabit narrow habitat preferences along two microhabitat gradients: an ionic gradient and a hydrological hummock-hollow gradient. In this article, we demonstrate the connections between microhabitat preference and phylogeny in Sphagnum. Using a dataset of 39 species of Sphagnum, with an 18-locus DNA alignment and an ecological dataset encompassing three large published studies, we tested for phylogenetic signal and within-genus changes in evolutionary rate of eight niche descriptors and two multivariate niche gradients.

View Article and Find Full Text PDF

To quantify potential nitrogen (N) deposition impacts on peatland carbon (C) uptake, we explored temporal and spatial trends in N deposition and climate impacts on the production of the key peat forming functional group (Sphagnum mosses) across European peatlands for the period 1900-2050. Using a modelling approach we estimated that between 1900 and 1950 N deposition impacts remained limited irrespective of geographical position. Between 1950 and 2000 N deposition depressed production between 0 and 25% relative to 1900, particularly in temperate regions.

View Article and Find Full Text PDF

• Peat bogs have accumulated more atmospheric carbon (C) than any other terrestrial ecosystem today. Most of this C is associated with peat moss (Sphagnum) litter. Atmospheric nitrogen (N) deposition can decrease Sphagnum production, compromising the C sequestration capacity of peat bogs.

View Article and Find Full Text PDF

Peatlands in the northern hemisphere have accumulated more atmospheric carbon (C) during the Holocene than any other terrestrial ecosystem, making peatlands long-term C sinks of global importance. Projected increases in nitrogen (N) deposition and temperature make future accumulation rates uncertain. Here, we assessed the impact of N deposition on peatland C sequestration potential by investigating the effects of experimental N addition on Sphagnum moss.

View Article and Find Full Text PDF

Stratigraphic records from peatlands suggest that the shift from a rich fen (calcareous fen) to an ombrotrophic bog can occur rapidly. This shift constitutes a switch from a species-rich ecosystem to a species-poor one with greater carbon storage. In this process, the invasion and expansion of acidifying bog species of Sphagnum (peat mosses) play a key role.

View Article and Find Full Text PDF

Objective: To compare three International Classification of Diseases code abstraction strategies that have previously been reported to mirror severe sepsis by examining retrospective Swedish national data from 1987 to 2005 inclusive.

Design: Retrospective cohort study.

Setting: Swedish hospital discharge database.

View Article and Find Full Text PDF

Sphagnum, the main genus which forms boreal peat, is strongly affected by N and S deposition and raised temperature, but the physiological mechanisms behind the responses are largely unknown. We measured maximum photosynthetic rate (NP(max)), maximum efficiency of photosystem II [variable fluorescence (F (v))/maximum fluorescence yield (F (m))] and concentrations of N, C, chlorophyll and carotenoids as responses to N and S addition and increased temperature in Sphagnum balticum (a widespread species in the northern peatlands) in a 12-year factorial experiment. NP(max) did not differ between control (0.

View Article and Find Full Text PDF

Increased N deposition in Europe has affected mire ecosystems. However, knowledge on the physiological responses is poor. We measured photosynthetic responses to increasing N deposition in two peatmoss species (Sphagnum balticum and Sphagnum fuscum) from a 3-year, north-south transplant experiment in northern Europe, covering a latitudinal N deposition gradient ranging from 0.

View Article and Find Full Text PDF

Objective: Warfarin is an anticoagulant which acts through interference with the recycling of vitamin K in the liver, leading to reduced activation of several clotting factors. Apolipoprotein E plays a central role in the uptake of the lipid-soluble vitamin K. The apolipoprotein E (APOE) alleles E2, E3 and E4 encode the three major isoforms of apolipoprotein E.

View Article and Find Full Text PDF