Publications by authors named "Gran-Scheuch A"

Aspartate ammonia lyases catalyze the reversible amination of fumarate to l-aspartate. Recent studies demonstrate that the thermostable enzyme from sp. YM55-1 (AspB) can be engineered for the enantioselective production of substituted β-amino acids.

View Article and Find Full Text PDF

Dimethylallyl tryptophan synthases (DMATSs) are aromatic prenyltransferases that catalyze the transfer of a prenyl moiety from a donor to an aromatic acceptor during the biosynthesis of microbial secondary metabolites. Due to their broad substrate scope, DMATSs are anticipated as biotechnological tools for producing bioactive prenylated aromatic compounds. Our study explored the substrate scope and product profile of a recombinant RePT, a novel DMATS from the thermophilic fungus Rasamsonia emersonii.

View Article and Find Full Text PDF

Biocatalysis is becoming a powerful and sustainable alternative for asymmetric catalysis. However, enzymes are often restricted to metabolic and less complex reactivities. This can be addressed by protein engineering, such as incorporating new-to-nature functional groups into proteins through the so-called expansion of the genetic code to produce artificial enzymes.

View Article and Find Full Text PDF

Biocatalysis has become a powerful alternative for green chemistry. Expanding the range of amino acids used in protein biosynthesis can improve industrially appealing properties such as enantioselectivity, activity and stability. This review will specifically delve into the thermal stability improvements that non-canonical amino acids (ncAAs) can confer to enzymes.

View Article and Find Full Text PDF

The vanillyl-alcohol oxidase (VAO) family is a rich source of biocatalysts for the oxidative bioconversion of phenolic compounds. Through genome mining and sequence comparisons, we found that several family members lack a generally conserved catalytic aspartate. This finding led us to study a VAO-homolog featuring a glutamate residue in place of the common aspartate.

View Article and Find Full Text PDF

The use of enzymes in organic synthesis is highly appealing due their remarkably high chemo-, regio- and enantioselectivity. Nevertheless, for biosynthetic routes to be industrially useful, the enzymes must fulfill several requirements. Particularly, in case of cofactor-dependent enzymes self-sufficient systems are highly valuable.

View Article and Find Full Text PDF

Diesel oil is the main source of energy used in Antarctica. Since diesel is composed of toxic compounds such as polycyclic aromatic hydrocarbons (PAHs) and heavy metals, it represents a constant threat to the organisms inhabiting this continent. In the present study, we characterized the chemical and biological parameters of diesel-exposed soils obtained from King George Island in Antarctica.

View Article and Find Full Text PDF

Bacterial trans-acyltransferase polyketide synthases (trans-AT PKSs) are multimodular megaenzymes that biosynthesize many bioactive natural products. They contain a remarkable range of domains and module types that introduce different substituents into growing polyketide chains. As one such modification, we recently reported Baeyer-Villiger-type oxygen insertion into nascent polyketide backbones, thereby generating malonyl thioester intermediates.

View Article and Find Full Text PDF

Actinobacteria are an important source of commercial (bio)compounds for the biotechnological and pharmaceutical industry. They have also been successfully exploited in the search of novel biocatalysts. We set out to explore a recently identified actinomycete, C34, isolated from a hyper-arid region, the Atacama desert, for Baeyer-Villiger monooxygenases (BVMOs).

View Article and Find Full Text PDF

Antarctica is an attractive target for human exploration and scientific investigation, however the negative effects of human activity on this continent are long lasting and can have serious consequences on the native ecosystem. Various areas of Antarctica have been contaminated with diesel fuel, which contains harmful compounds such as heavy metals and polycyclic aromatic hydrocarbons (PAH). Bioremediation of PAHs by the activity of microorganisms is an ecological, economical, and safe decontamination approach.

View Article and Find Full Text PDF

A simple and sensitive method for quantification of nanomolar copper with a detection limit of 1.2×10(-10)M and a linear range from 10(-9) to 10(-8)M is reported. For the most useful analytical concentration of quantum dots, 1160μg/ml, a 1/Ksv value of 11μM Cu(2+) was determined.

View Article and Find Full Text PDF