Publications by authors named "Grainger D"

Thiolated dimeric tetramethylrhodamine (TAMRA) was synthesized in a straightforward procedure utilizing commercially available 5(6)-succinimidyl TAMRA and cystamine hydrochloride. The thiol-containing TAMRA dimer displayed distinct spectral properties in reduced and oxidized forms; covalent dimer formation produced greater effects on the spectral properties than previously reported for noncovalent TAMRA dimers or dimers formed with shorter carbon spacers. The resulting TAMRA disulfide dimer exhibited a hypsochromic shift of 34 nm relative to the reduced monomer species and an isosbestic point at 532 nm between reduced monomeric and oxidized dimeric forms.

View Article and Find Full Text PDF

Objective: To evaluate ethnic differences in assisted reproductive technology (ART) outcomes in the United States.

Design: Historical cohort study.

Setting: Clinic-based data.

View Article and Find Full Text PDF

Objective: To evaluate the effect of intracytoplasmic sperm injection (ICSI) and male factor infertility on the sex ratio in births from assisted reproductive technology.

Design: Historic cohort study.

Setting: Clinic-based data.

View Article and Find Full Text PDF

The impact of some model perfumes on surfactant self-assembly has been investigated, using small-angle neutron scattering. A range of different model perfumes, with differing degrees of hydrophilicity/hydrophobicity, have been explored, and in order of increasing hydrophobicity include phenyl ethanol (PE), rose oxide (RO), limonene (LM), linalool (LL), and dihydrogen mercenol (DHM). The effect of their solubilization on the nonionic surfactant micelles of dodecaethylene monododecyl ether (C12EO12) and on the mixed surfactant aggregates of C12EO12 and the cationic dialkyl chain surfactant dihexadecyl dimethyl ammonium bromide (DHDAB) has been quantified.

View Article and Find Full Text PDF

This paper describes a new bioassay surface chemistry that effectively inhibits non-specific biomolecular and cell binding interactions, while providing a capacity for specific immobilization of desired biomolecules. Poly(ethylene glycol) (PEG) as the primary component in nonfouling film chemistry is well-established, but the multicomponent formulation described here is unique in that it (1) is applied in a single, reproducible, solution-based coating step; (2) can be applied to diverse substrate materials without the use of special primers; and (3) is readily functionalized to provide specific attachment chemistries. Surface analysis data are presented, detailing surface roughness, polymer film thickness, and film chemistry.

View Article and Find Full Text PDF

Objective: To evaluate the effect of first trimester fetal losses on twin births from assisted reproductive technology (ART).

Design: Historical cohort study.

Setting: Clinic-based data.

View Article and Find Full Text PDF
Time to trade for health.

Med Confl Surviv

October 2008

There is a growing realization that present levels of healthcare provision can only be maintained with the engagement of the community in the maintenance of their own health, and that stronger communities are healthier communities. 'Time 2 Trade for health' looks at a different approach to public engagement. Time banking is a 'community currency' which uses the hour as the unit of exchange, where every single person's input is valued equally.

View Article and Find Full Text PDF

A major goal in the study of gene regulation is to untangle the transcription-regulatory networks of Escherichia coli and other 'simple' organisms. To do this we must catalogue the binding sites of all transcription factors. ChIP (chromatin immunoprecipitation), combined with DNA microarray analysis, is a powerful tool that permits global patterns of DNA binding to be measured.

View Article and Find Full Text PDF

High-fidelity surface functional group (e.g., N-hydroxysuccinimide (NHS) reactive ester) patterning is readily and reliably achieved on commercial poly(ethylene glycol) (PEG)-based polymer films already known to exhibit high performance non-fouling properties in full serum and in cell culture conditions.

View Article and Find Full Text PDF

Objective: To evaluate the effect of first trimester fetal losses in singleton births from assisted reproductive technology using data from the Society for Assisted Reproductive Technology national database for 2005.

Design: Historic cohort study.

Setting: Clinic-based data.

View Article and Find Full Text PDF

This review of current DNA and protein microarray diagnostic and bio-analytical technologies focuses on the different surface chemistries used in these miniaturized surface-capture formats. Description of current strategies in bio-immobilization and coupling to create multiplexed affinity bioassays in micrometer-sized printed spots, problems with current formats and review of some detection methods are included. Recommendations for improving long-standing challenges in DNA- and protein-based arrays are forwarded.

View Article and Find Full Text PDF

The Escherichia coli RutR protein is the master regulator of genes involved in pyrimidine catabolism. Here we have used chromatin immunoprecipitation in combination with DNA microarrays to measure the binding of RutR across the chromosome of exponentially growing E. coli cells.

View Article and Find Full Text PDF

Dps is a nucleoid-associated protein that plays a major role in condensation of the Escherichia coli chromosome in stationary phase. Here we show that two other nucleoid-associated proteins, Fis and H-NS, can bind at the dps gene promoter and downregulate its activity. Both Fis and H-NS selectively repress the dps promoter, preventing transcription initiation by RNA polymerase containing sigma(70), the housekeeping sigma factor, but not by RNA polymerase containing sigma(38), the stationary-phase sigma factor.

View Article and Find Full Text PDF

NsrR is a nitric oxide-sensitive regulator of transcription. In Escherichia coli, NsrR is a repressor of the hmp gene encoding the flavohemoglobin that detoxifies nitric oxide. Three other transcription units (ytfE, ygbA, and hcp-hcr) are known to be subject to regulation by NsrR.

View Article and Find Full Text PDF

Cells of the mononuclear phagocytic system including monocytes and macrophages (e.g., pooled human monocytes, bone marrow-derived macrophages, etc.

View Article and Find Full Text PDF

The Escherichia coli MelR protein is a transcription activator that autoregulates its own promoter by repressing transcription initiation. Optimal repression requires MelR binding to a site that overlaps the melR transcription start point and to upstream sites. In this work, we have investigated the different determinants needed for optimal repression and their spatial requirements.

View Article and Find Full Text PDF

Monocyte/macrophage adhesion to biomaterials, correlated with foreign body response, occurs through protein-mediated surface interactions. Albumin-selective perfluorocarbon (FC) biomaterials are generally poorly cell-conducive because of insufficient receptor-mediated surface interactions, but macrophages bind to albumin-coated substrates and also preferentially to highly hydrophobic fluorinated surfaces. Bone marrow macrophages (BMMO) and IC-21, RAW 264.

View Article and Find Full Text PDF

Male reproductive proteins (MRPs), associated with sperm and semen, are the moieties responsible for carrying male genes into the next generation. Evolutionary biologists have focused on their capacity to control conception. Immunologists have shown that MRPs cause female genital tract inflammation as preparatory for embryo implantation and placentation.

View Article and Find Full Text PDF

A new polymer brush chemistry containing sulfonated carbohydrate repeat units has been synthesized from silicon substrates using ATRP methods and characterized both in bulk and using surface analysis. The polymer brush was designed to act as a mimic for the naturally occurring sulfonated glycosaminoglycan, heparin, commonly used for modifying blood-contacting surfaces both in vitro and in vivo. Surface analysis showed conversion of brush saccharide precursor chemistry to the desired sulfonated polymer product.

View Article and Find Full Text PDF

Microarray technology, like many other surface-capture diagnostic methods, relies on fidelity of affinity interactions between a surface-bound probe (e.g., nucleic acid or antibody) and its target in the sample milieu to produce an assay signal specific to analyte.

View Article and Find Full Text PDF

In almost all microarray technologies that are currently used, some type of surface chemistry serves as the interface between immobilized biomolecules and the solid support. Factors such as probe loading, spot morphology, and signal-to-noise ratio are all intimately linked to surface chemistry. Surface chemistry also significantly impacts important performance parameters such as three-dimensional structure of the immobilized biomolecules and nonspecific assay backgrounds.

View Article and Find Full Text PDF

Objective: To compare success rates in black and white women undergoing IVF.

Design: Retrospective cohort study.

Setting: Society for Assisted Reproductive Technology member clinics in 1999-2000 that performed >or=50 cycles of IVF and reported race/ethnicity in >95% of cycles.

View Article and Find Full Text PDF

This review focuses on new and emerging large-molecule bioactive agents delivered from stent surfaces in drug-eluting stents (DESs) to inhibit vascular restenosis in the context of interventional cardiology. New therapeutic agents representing proteins, nucleic acids (small interfering RNAs and large DNA plasmids), viral delivery vectors, and even engineered cell therapies require specific delivery designs distinct from traditional smaller-molecule approaches on DESs. While small molecules are currently the clinical standard for coronary stenting, extension of the DESs to other lesion types, peripheral vasculature, and nonvasculature therapies will seek to deliver an increasingly sophisticated armada of drug types.

View Article and Find Full Text PDF

N-Hydroxysuccinimide (NHS) esters are widely used as leaving groups to activate covalent coupling of amine-containing biomolecules onto surfaces in academic and commercial surface immobilizations. Their intrinsic hydrolytic instability is well-known and remains a concern for maintaining stable, reactive surface chemistry, especially for reliable longer term storage. In this work, we use X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry (TOF-SIMS) to investigate surface hydrolysis in NHS-bearing organic thin films.

View Article and Find Full Text PDF