The central nervous system (CNS) can be preconditioned to resist damage by peripheral pretreatment with low-dose gram-negative bacterial endotoxin lipopolysaccharide (LPS). Underlying mechanisms associated with transient protection of the cerebral cortex against traumatic brain injury include increased neuronal production of antiapoptotic and neurotrophic molecules, microglial-mediated displacement of inhibitory presynaptic terminals innervating the soma of cortical projection neurons, and synchronized firing of cortical projection neurons. However, the cell types and signaling responsible for these neuronal and microglial changes are unknown.
View Article and Find Full Text PDFCognitive dysfunction occurs in greater than 50% of individuals with multiple sclerosis (MS). Hippocampal demyelination is a prominent feature of postmortem MS brains and hippocampal atrophy correlates with cognitive decline in MS patients. Cellular and molecular mechanisms responsible for neuronal dysfunction in demyelinated hippocampi are not fully understood.
View Article and Find Full Text PDFTaste buds comprise four types of taste cells: three mature, elongate types, Types I-III; and basally situated, immature postmitotic type, Type IV cells. We employed serial blockface scanning electron microscopy to delineate the characteristics and interrelationships of the taste cells in the circumvallate papillae of adult mice. Type I cells have an indented, elongate nucleus with invaginations, folded plasma membrane, and multiple apical microvilli in the taste pore.
View Article and Find Full Text PDFConventional chemical synapses in the nervous system involve a presynaptic accumulation of neurotransmitter-containing vesicles, which fuse with the plasma membrane to release neurotransmitters that activate postsynaptic receptors. In taste buds, type II receptor cells do not have conventional synaptic features but nonetheless show regulated release of their afferent neurotransmitter, ATP, through a large-pore, voltage-gated channel, CALHM1. Immunohistochemistry revealed that CALHM1 was localized to points of contact between the receptor cells and sensory nerve fibers.
View Article and Find Full Text PDFFragile X Syndrome (FXS) is the major cause of inherited mental retardation and the leading genetic cause of Autism spectrum disorders. FXS is caused by mutations in the Fragile X Mental Retardation 1 (Fmr1) gene, which results in transcriptional silencing of Fragile X Mental Retardation Protein (FMRP). To elucidate cellular mechanisms involved in the pathogenesis of FXS, we compared dendritic spines in the hippocampal CA1 region of adult wild-type (WT) and Fmr1 knockout (Fmr1-KO) mice.
View Article and Find Full Text PDFTo assess serial section block-face scanning electron microscopy (SBFSEM) for retinal pigment epithelium (RPE) ultrastructure, we determined the number and distribution within RPE cell bodies of melanosomes (M), lipofuscin (L), and melanolipofuscin (ML). Eyes of 4 Caucasian donors (16M, 32F, 76F, 84M) with unremarkable maculas were sectioned and imaged using an SEM fitted with an in-chamber automated ultramicrotome. Aligned image stacks were generated by alternately imaging an epoxy resin block face using backscattered electrons, then removing a 125 nm-thick layer.
View Article and Find Full Text PDFBACE1 is an indispensable enzyme for generating β-amyloid peptides, which are excessively accumulated in brains of Alzheimer's patients. However, BACE1 is also required for proper myelination of peripheral nerves, as BACE1-null mice display hypomyelination. To determine the precise effects of BACE1 on myelination, here we have uncovered a role of BACE1 in the control of Schwann cell proliferation during development.
View Article and Find Full Text PDFHereditary spastic paraplegia (HSP) is a neurological syndrome characterized by degeneration of central nervous system (CNS) axons. Mutated HSP proteins include myelin proteolipid protein (PLP) and axon-enriched proteins involved in mitochondrial function, smooth endoplasmic reticulum (SER) structure, and microtubule (MT) stability/function. We characterized axonal mitochondria, SER, and MTs in rodent optic nerves where PLP is replaced by the peripheral nerve myelin protein, P (P-CNS mice).
View Article and Find Full Text PDFUnlabelled: The impact of aging on CNS white matter (WM) is of general interest because the global effects of aging on myelinated nerve fibers are more complex and profound than those in cortical gray matter. It is important to distinguish between axonal changes created by normal aging and those caused by neurodegenerative diseases, including multiple sclerosis, stroke, glaucoma, Alzheimer's disease, and traumatic brain injury. Using three-dimensional electron microscopy, we show that in mouse optic nerve, which is a pure and fully myelinated WM tract, aging axons are larger, have thicker myelin, and are characterized by longer and thicker mitochondria, which are associated with altered levels of mitochondrial shaping proteins.
View Article and Find Full Text PDFHuman brain is a high energy consuming organ that mainly relies on glucose as a fuel source. Glucose is catabolized by brain mitochondria via glycolysis, tri-carboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS) pathways to produce cellular energy in the form of adenosine triphosphate (ATP). Impairment of mitochondrial ATP production causes mitochondrial disorders, which present clinically with prominent neurological and myopathic symptoms.
View Article and Find Full Text PDFAxonal damage has been associated with aberrant protein trafficking. We examined a newly characterized class of compounds that target nucleo-cytoplasmic shuttling by binding to the catalytic groove of the nuclear export protein XPO1 (also known as CRM1, chromosome region maintenance protein 1). Oral administration of reversible CRM1 inhibitors in preclinical murine models of demyelination significantly attenuated disease progression, even when started after the onset of paralysis.
View Article and Find Full Text PDFFusiform cells are the main integrative units of the mammalian dorsal cochlear nucleus (DCN), collecting and processing inputs from auditory and other sources before transmitting information to higher levels of the auditory system. Despite much previous work describing these cells and the sources and pharmacological identity of their synaptic inputs, information on the three-dimensional organization and utltrastructure of synapses on these cells is currently very limited. This information is essential since an understanding of synaptic plasticity and remodeling and pathologies underlying disease states and hearing disorders must begin with knowledge of the normal characteristics of synapses on these cells, particularly those features that determine the strength of their influence on the various compartments of the cell.
View Article and Find Full Text PDFThe central nervous system (CNS) of terrestrial vertebrates underwent a prominent molecular change when proteolipid protein (PLP) replaced P0 protein as the most abundant protein of CNS myelin. However, PLP did not replace P0 in peripheral nervous system (PNS) myelin. To investigate the possible consequences of a PLP to P0 shift in PNS myelin, we engineered mice to express PLP instead of P0 in PNS myelin (PLP-PNS mice).
View Article and Find Full Text PDFMicroglia actively survey the brain microenvironment and play essential roles in sculpting synaptic connections during brain development. While microglial functions in the adult brain are less clear, activated microglia can closely appose neuronal cell bodies and displace axosomatic presynaptic terminals. Microglia-mediated stripping of presynaptic terminals is considered neuroprotective, but the cellular and molecular mechanisms are poorly defined.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2014
Axonal degeneration is a primary cause of permanent neurological disability in individuals with the CNS demyelinating disease multiple sclerosis. Dysfunction of axonal mitochondria and imbalanced energy demand and supply are implicated in degeneration of chronically demyelinated axons. The purpose of this study was to define the roles of mitochondrial volume and distribution in axonal degeneration following acute CNS demyelination.
View Article and Find Full Text PDFThe fundamental roles of Schwann cells during peripheral nerve formation and regeneration have been recognized for more than 100 years, but the cellular and molecular mechanisms that integrate Schwann cell and axonal functions continue to be elucidated. Derived from the embryonic neural crest, Schwann cells differentiate into myelinating cells or bundle multiple unmyelinated axons into Remak fibers. Axons dictate which differentiation path Schwann cells follow, and recent studies have established that axonal neuregulin1 signaling via ErbB2/B3 receptors on Schwann cells is essential for Schwann cell myelination.
View Article and Find Full Text PDFThe gene encoding the WD repeat-containing protein 81 (WDR81) has recently been described as the disease locus in a consanguineous family that suffers from cerebellar ataxia, mental retardation, and quadrupedal locomotion syndrome (CAMRQ2). Adult mice from the N-ethyl-N-nitrosourea-induced mutant mouse line nur5 display tremor and an abnormal gait, as well as Purkinje cell degeneration and photoreceptor cell loss. We have used polymorphic marker mapping to demonstrate that affected nur5 mice carry a missense mutation, L1349P, in the Wdr81 gene.
View Article and Find Full Text PDFObjective: Presently there is no clinically feasible imaging modality that can effectively detect cortical demyelination in patients with multiple sclerosis (MS). The objective of this study is to determine if clinically feasible magnetization transfer ratio (MTR) imaging is sensitive to cortical demyelination in MS.
Methods: MRI were acquired in situ on 7 recently deceased patients with MS using clinically feasible sequences at 3 T, including relatively high-resolution T1-weighted and proton density-weighted images with/without a magnetization transfer pulse for calculation of MTR.
Objective: Generation and differentiation of new oligodendrocytes in demyelinated white matter is the best described repair process in the adult human brain. However, remyelinating capacity falters with age in patients with multiple sclerosis (MS). Because demyelination of cerebral cortex is extensive in brains from MS patients, we investigated the capacity of cortical lesions to remyelinate and directly compared the extent of remyelination in lesions that involve cerebral cortex and adjacent subcortical white matter.
View Article and Find Full Text PDFIntraperitoneal injection of the Gram-negative bacterial endotoxin lipopolysaccharide (LPS) elicits a rapid innate immune response. While this systemic inflammatory response can be destructive, tolerable low doses of LPS render the brain transiently resistant to subsequent injuries. However, the mechanism by which microglia respond to LPS stimulation and participate in subsequent neuroprotection has not been documented.
View Article and Find Full Text PDFEnergy production presents a formidable challenge to axons as their mitochondria are synthesized and degraded in neuronal cell bodies. To meet the energy demands of nerve conduction, small mitochondria are transported to and enriched at mitochondrial stationary sites located throughout the axon. In this study, we investigated whether size and motility of mitochondria in small myelinated CNS axons are differentially regulated at nodes, and whether mitochondrial distribution and motility are modulated by axonal electrical activity.
View Article and Find Full Text PDFObjective: Multiple Sclerosis (MS) is an inflammatory demyelinating disease of the human central nervous system. Although the clinical impact of gray matter pathology in MS brains is unknown, 30 to 40% of MS patients demonstrate memory impairment. The molecular basis of this memory dysfunction has not yet been investigated in MS patients.
View Article and Find Full Text PDFAxonal degeneration contributes to permanent neurological disability in inherited and acquired diseases of myelin. Mitochondrial dysfunction has been proposed as a major contributor to this axonal degeneration. It remains to be determined, however, if myelination, demyelination, or remyelination alter the size and distribution of axonal mitochondrial stationary sites or the rates of axonal mitochondrial transport.
View Article and Find Full Text PDFWe have identified a novel population of cells in the subventricular zone (SVZ) of the mammalian brain that expresses beta4 tubulin (betaT4) and has properties of primitive neuroectodermal cells. betaT4 cells are scattered throughout the SVZ of the lateral ventricles in adult human brain and are significantly increased in the SVZs bordering demyelinated white matter in multiple sclerosis brains. In human fetal brain, betaT4 cell densities peak during the latter stages of gliogenesis, which occurs in the SVZ of the lateral ventricles.
View Article and Find Full Text PDF