Basal cell carcinoma (BCC) is associated with aberrant Hedgehog (HH) signalling through mutational inactivation of PTCH1; however, there is conflicting data regarding MEK/ERK signalling in BCC and the signalling pathway interactions in these carcinomas. To address this, expression of active phospho (p) MEK and ERK was examined in a panel of 15 non-aggressive and 14 aggressive BCCs. Although not uniformly expressed, both phospho-proteins were detected in the nuclei and/or cytoplasm of normal and tumour-associated epidermal cells however, whereas phospho-MEK (pMEK) was present in all non-aggressive BCCs (14/14), phospho-ERK (pERK) was rarely expressed (2/14).
View Article and Find Full Text PDFSmall-molecule inhibitors of the Hedgehog (HH) pathway receptor Smoothened (SMO) have been effective in treating some patients with basal cell carcinoma (BCC), where the HH pathway is often activated, but many patients respond poorly. In this study, we report the results of investigations on PTCH1 signaling in the HH pathway that suggest why most patients with BCC respond poorly to SMO inhibitors. In immortalized human keratinocytes, PTCH1 silencing led to the generation of a compact, holoclone-like morphology with increased expression of SMO and the downstream HH pathway transcription factor GLI1.
View Article and Find Full Text PDFAberrant Hedgehog (Hh) signalling has been reported in a number of malignancies, particularly basal cell carcinoma (BCC) of the skin. Clinical trials of Hh inhibitors are underway in many cancers, and these have produced significant clinical benefit in BCC patients, although regrowth of new, or clinically aggressive, variants, as well as development of secondary malignancies, has been reported. αvβ6 integrin is expressed in many cancers, where it has been shown to correlate with an aggressive tumour phenotype and poor prognosis.
View Article and Find Full Text PDFThe GLI (GLI1/GLI2) transcription factors have been implicated in the development and progression of prostate cancer although our understanding of how they actually contribute to the biology of these common tumours is limited. We observed that GLI reporter activity was higher in normal (PNT-2) and tumourigenic (DU145 and PC-3) androgen-independent cells compared to androgen-dependent LNCaP prostate cancer cells and, accordingly, GLI mRNA levels were also elevated. Ectopic expression of GLI1 or the constitutively active ΔNGLI2 mutant induced a distinct cobblestone-like morphology in LNCaP cells that, regarding the former, correlated with increased GLI2 as well as expression of the basal/stem-like markers CD44, β1-integrin, ΔNp63 and BMI1, and decreased expression of the luminal marker AR (androgen receptor).
View Article and Find Full Text PDFAlthough deregulated Hedgehog signalling and elevated Gli transcription factor expression are known to promote the development of basal cell carcinoma (BCC), little is known about molecular mechanisms driving the development of specific growth pattern subtypes. Using gene array analysis, we have previously observed that over-expression of GLI1 in human keratinocytes promotes increased expression of the neuronal differentiation markers ARC and ULK1. We asked whether neuronal differentiation is a characteristic of BCC and whether there is any correlation with BCC subtype.
View Article and Find Full Text PDFBasal cell carcinoma (BCC) is the most prevalent cancer in the Western world and its incidence is increasing. The pathogenesis of BCC involves deregulated Sonic hedgehog signaling, leading to activation of the Gli transcription factors. Most BCCs have a nodular growth pattern, and are indolent, slow-growing, and considered "low-risk" lesions.
View Article and Find Full Text PDFBasal cell carcinoma (BCC) of the skin is a highly compact, non-metastatic epithelial tumour type that may arise from the aberrant propagation of epidermal or progenitor stem cell (SC) populations. Increased expression of GLI1 is a common feature of BCC and is linked to the induction of epidermal SC markers in immortalized N/Tert-1 keratinocytes. Here, we demonstrate that GLI1 over-expression is linked to additional SC characteristics in N/Tert-1 cells including reduced epidermal growth factor receptor (EGFR) expression and compact colony formation that is associated with repressed extracellular signal-regulated kinase (ERK) activity.
View Article and Find Full Text PDFHedgehog (HH)/GLI signaling plays a critical role in epidermal development and basal cell carcinoma. Here, we provide evidence that epidermal growth factor receptor (EGFR) signaling modulates the target gene expression profile of GLI transcription factors in epidermal cells. Using expression profiling and quantitative reverse transcriptase PCR, we identified a set of 19 genes whose transcription is synergistically induced by GLI1 and parallel EGF treatment.
View Article and Find Full Text PDFAberrant activation of the Hedgehog (HH)/GLI signaling pathway has been implicated in the development of basal cell carcinoma (BCC). The zinc finger transcription factors GLI1 and GLI2 are considered mediators of the HH signal in epidermal cells, although their tumorigenic nature and their relative contribution to tumorigenesis are only poorly understood. To shed light on the respective role of these transcription factors in epidermal neoplasia, we screened for genes preferentially regulated either by GLI1 or GLI2 in human epidermal cells.
View Article and Find Full Text PDFSonic hedgehog (Shh) binds to its receptor patched (PTCH), leading to the activation and repression of target genes via the GLI family of zinc-finger transcription factors. Deregulation of the Shh pathway is associated with basal cell carcinoma (BCC) due to upregulation of GLI1 and GLI2. We recently demonstrated a positive feedback loop between GLI1 and GLI2, which revealed that GLI1 may be a direct target of GLI2.
View Article and Find Full Text PDFSonic hedgehog (Hh) signaling plays a key role in epidermal development and skin cancer. Mutational inactivation of the tumor suppressor gene patched (PTCH) leads to constitutive activation of the Hh signaling pathway, resulting in activation of target gene transcription by the zinc finger transcription factors GLI1 and GLI2. Recent experiments in mice point to GLI2 as the key mediator of Hh signaling in skin.
View Article and Find Full Text PDFIn stratified epidermis, activation of the Hh/Gli signal transduction pathway has been implicated in the control of cell proliferation and tumorigenesis. The zinc-finger transcription factor Gli2 has been identified as critical mediator of the Hh signal at the distal end of the pathway, but the molecular mechanisms by which Gli2 regulates cell proliferation or induces epidermal malignancies such as basal cell carcinoma are still unclear. Here, we provide evidence for a role of human GLI2 in antagonizing contact inhibition and epidermal differentiation.
View Article and Find Full Text PDFActivation of the Sonic hedgehog signaling pathway, primarily through mutational inactivation of the PTCH1 gene, is associated with the development of basal cell carcinoma (BCC). Gli1, a member of the Gli family of transcription factors, is expressed in BCC and in transgenic mice targeted expression of Gli1 in basal keratinocytes leads to BCC development. In addition to BCC, previous studies have shown that Gli1 is expressed in the outer root sheath (ORS) of the hair follicle but is absent in interfollicular epidermis.
View Article and Find Full Text PDFForkhead box (FOX) proteins have been shown to play important roles in regulating the expression of genes involved in cell growth, proliferation, differentiation, longevity, and transformation. The functional importance of this gene family in normal human skin physiology and disease processes is not well understood. Activation of Sonic Hedgehog (Shh) signaling plays a key role in the development of basal cell carcinomas (BCCs) of the skin in humans.
View Article and Find Full Text PDFTransgenic mouse models have provided evidence that activation of the zinc-finger transcription factor GLI1 by Hedgehog (Hh)-signalling is a key step in the initiation of the tumorigenic programme leading to Basal Cell Carcinoma (BCC). However, the downstream events underlying Hh/GLI-induced BCC development are still obscure. Using in vitro model systems to analyse the effect of Hh/GLI-signalling in human keratinocytes, we identified a positive feedback mechanism involving the zinc finger transcription factors GLI1 and GLI2.
View Article and Find Full Text PDF