Publications by authors named "Graham R Sharpe"

Lactate is an important energy intermediate and metabolic buffer, and may be ergogenic. We investigated if lactate supplementation is an effective approach to enhance the exercise performance and acid-base balance of trained cyclists during exercise devised to simulate the demands of endurance road race cycling. Sixteen endurance-trained male cyclists (V·O 59 ± 7 mL·kg·min) consumed 120 mg·kg body mass of lactate or a placebo 70 min prior to performing an exercise performance test, comprising five repeated blocks consisting of 1 km and 4 km time trials interspersed with 10 min of moderate-intensity exercise.

View Article and Find Full Text PDF

The respiratory muscle pressure generation and inspiratory and expiratory neuromuscular recruitment patterns in younger and older men were compared during exercise, alongside descriptors of dyspnea. Healthy younger (n = 8, 28 ± 5 years) and older (n = 8, 68 ± 4 years) men completed a maximal incremental cycling test. Esophageal, gastric (P ) and transdiaphragmatic pressures, and electromyography (EMG) of the crural diaphragm were measured using a micro-transducer and EMG catheter.

View Article and Find Full Text PDF

Introduction: Exercise-induced bronchoconstriction (EIB) is a prevalent condition in athletes. EIB screening studies identify many athletes with undiagnosed EIB. Moreover, there is a poor relationship between EIB and dyspnea symptoms recalled from memory.

View Article and Find Full Text PDF

Low-grade inflammation is often an underlying cause of several chronic diseases such as asthma, obesity, cardiovascular disease, and type 2 diabetes mellitus (T2DM). Defining the mediators of such chronic low-grade inflammation often appears dependent on which disease is being investigated. However, downstream systemic inflammatory cytokine responses in these diseases often overlap, noting there is no doubt more than one factor at play to heighten the inflammatory response.

View Article and Find Full Text PDF

Purpose: The mechanisms that explain the ability of trained martial arts practitioners to produce and resist greater forces than untrained individuals to aid combat performance are not fully understood. We investigated whether the greater ability of trained martial arts practitioners to produce and resist forces was associated with an enhanced control of respiratory pressures and neuromuscular activation of the respiratory, abdominal, and pelvic floor musculature.

Methods: Nine trained martial arts practitioners and nine untrained controls were instrumented with skin-surface electromyography (EMG) on the sternocleidomastoid, rectus abdominis, and the group formed by the transverse abdominal and internal oblique muscles (EMG).

View Article and Find Full Text PDF

Respiratory pressure responses to cervical magnetic stimulation are important measurements in monitoring the mechanical function of the respiratory muscles. Pressures can be measured using balloon catheters or a catheter containing integrated micro-transducers. However, no research has provided a comprehensive analysis of their pressure measurement characteristics.

View Article and Find Full Text PDF

Introduction: The ergogenic effects of respiratory alkalosis induced by prior voluntary hyperventilation (VH) are controversial. This study examined the effects of prior VH on derived parameters from the 3-min all-out cycling test (3MT).

Methods: Eleven men ( = 46 ± 8 mL·kg-1·min-1) performed a 3MT preceded by 15 min of rest (CONT) or VH ( = 38 ± 5 L·min-1) with PETCO2 reduced to 21 ± 1 mm Hg (HYP).

View Article and Find Full Text PDF

We questioned whether the respiratory muscles of humans contribute to systemic oxidative stress following inspiratory flow-resistive breathing, whether the amount of oxidative stress is influenced by the level of resistive load, and whether the amount of oxidative stress is related to the degree of diaphragm fatigue incurred. Eight young and healthy participants attended the laboratory for four visits on separate days. During the first visit, height, body mass, lung function, and maximal inspiratory mouth and transdiaphragmatic pressure (P) were assessed.

View Article and Find Full Text PDF

Introduction: Prior upper body exercise reduces the curvature constant (W') of the hyperbolic power-duration relationship without affecting critical power. This study tested the hypothesis that prior upper body exercise reduces the work done over the end-test power (WEP; analog of W') during a 3-min all-out cycling test (3MT) without affecting the end-test power (EP; analog of critical power).

Methods: Ten endurance-trained men (V˙O2max = 62 ± 5 mL·kg·min) performed a 3MT without (CYC) and with (ARM-CYC) prior severe-intensity, intermittent upper body exercise.

View Article and Find Full Text PDF

One of the most interesting and everyday natural phenomenon is the formation of different patterns after the evaporation of liquid droplets on a solid surface. The analysis of dried patterns from blood droplets has recently gained a lot of attention, experimentally and theoretically, due to its potential application in diagnostic medicine and forensic science. This paper presents evidence that images of dried blood droplets have a signature revealing the exhaustion level of the person, and discloses an entirely novel approach to studying human dried blood droplet patterns.

View Article and Find Full Text PDF

Although high dose n-3 PUFA supplementation reduces exercise- and hyperpnoea-induced bronchoconstriction (EIB/HIB), there are concurrent issues with cost, compliance and gastrointestinal discomfort. It is thus pertinent to establish the efficacy of lower n-3 PUFA doses. Eight male adults with asthma and HIB and eight controls without asthma were randomly supplemented with two n-3 PUFA doses (6·2 g/d (3·7 g EPA and 2·5 g DHA) and 3·1 g/d (1·8 g EPA and 1·3 g DHA)) and a placebo, each for 21 d followed by 14 d washout.

View Article and Find Full Text PDF

Gut microbes have a substantial influence on systemic immune function and allergic sensitisation. Manipulation of the gut microbiome through prebiotics may provide a potential strategy to influence the immunopathology of asthma. This study investigated the effects of prebiotic Bimuno-galactooligosaccharide (B-GOS) supplementation on hyperpnoea-induced bronchoconstriction (HIB), a surrogate for exercise-induced bronchoconstriction, and airway inflammation.

View Article and Find Full Text PDF

Purpose: Declining inspiratory muscle function and structure and systemic low-level inflammation and oxidative stress may contribute to morbidity and mortality during normal ageing. Therefore, we examined the effects of inspiratory muscle training (IMT) in older adults on inspiratory muscle function and structure and systemic inflammation and oxidative stress, and reexamined the reported positive effects of IMT on respiratory muscle strength, inspiratory muscle endurance, spirometry, exercise performance, physical activity levels (PAL), and quality of life (QoL).

Methods: Thirty-four healthy older adults (68 ± 3 yr) with normal spirometry, respiratory muscle strength, and physical fitness were divided equally into a pressure-threshold IMT or sham-hypoxic placebo group.

View Article and Find Full Text PDF

We investigated (1) the relationship between the baseline and inspiratory muscle training (IMT) induced increase in maximal inspiratory pressure (P(I,max)) and (2) the relative contributions of the inspiratory chest wall muscles and the diaphragm (P(oes)/P(di)) to P(I,max) prior to and following-IMT. Experiment 1: P(I,max) was assessed during a Müeller manoeuvre before and after 4-wk IMT (n=30). Experiment 2: P(I,max) and the relative contribution of the inspiratory chest wall muscles to the diaphragm (P(oes)/P(di)) were assessed during a Müeller manoeuvre before and after 4-wk IMT (n=20).

View Article and Find Full Text PDF

The influence of oxidative stress, diaphragm fatigue, and inspiratory muscle training (IMT) on the cytokine response to maximum sustainable voluntary ventilation (MSVV) is unknown. Twelve healthy males were divided equally into an IMT or placebo (PLA) group, and before and after a 6-wk intervention they undertook, on separate days, 1 h of (1) passive rest and (2) MSVV, whereby participants undertook volitional hyperpnea at rest that mimicked the breathing and respiratory muscle recruitment patterns commensurate with heavy cycling exercise. Plasma cytokines remained unchanged during passive rest.

View Article and Find Full Text PDF

Purpose: This study examined whether metabolite accumulation, induced by prior upper body exercise, affected the power-duration relationship for leg cycle ergometry.

Methods: Seven males performed, to the limit of tolerance and both without (L) and with (AL) prior severe-intensity arm-cranking exercise, an incremental cycling test and four constant power cycling tests to determine the parameters of the power-duration relationship: critical power (CP) and W'.

Results: At the onset of cycling exercise plasma lactate (L vs AL: 1.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers explored if respiratory muscles affect exercise-induced increases in plasma interleukin-6 (IL-6) levels, particularly during diaphragm fatigue and with inspiratory muscle training (IMT).
  • A study with 12 healthy males found that IMT decreased IL-6 response to actual exercise but not to simulated hyperpnea, while no diaphragm fatigue was detected during any trial.
  • Results indicated that both exercise and hyperpnea elevate IL-6 levels, and that IMT can moderate this response to real exercise but not to mimicked conditions.
View Article and Find Full Text PDF

Purpose: This study examined the effects of different pressure threshold inspiratory loads on lactate clearance and plasma acid-base balance during recovery from maximal exercise.

Methods: Eight moderately trained males (V˙O(2peak) = 4.29 ± 0.

View Article and Find Full Text PDF

We examined the effects of inspiratory muscle training (IMT) upon volitional hyperpnoea-mediated increases in blood lactate ([lac(-)](B)) during cycling at maximal lactate steady state (MLSS) power, and blood lactate and oxygen uptake kinetics at the onset of exercise. Twenty males formed either an IMT (n = 10) or control group (n = 10). Prior to and following a 6-week intervention, two 30 min trials were performed at MLSS (207 ± 28 W), determined using repeated 30 min constant power trials.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to investigate the effects of inspiratory threshold loading (ITL) and inspiratory muscle training (IMT) on blood lactate concentration ([lac(-)]B) and acid-base balance after maximal incremental cycling.

Methods: Eighteen subjects were divided into a control (n = 9) or an IMT group (n = 9). Before and after a 6-wk intervention, subjects completed two maximal incremental cycling tests followed by 20 min of recovery with (ITL) or without (passive recovery (PR)) a constant inspiratory resistance (15 cm H2O).

View Article and Find Full Text PDF

Although reduced blood lactate concentrations ([lac(-)](B)) have been observed during whole-body exercise following inspiratory muscle training (IMT), it remains unknown whether the inspiratory muscles are the source of at least part of this reduction. To investigate this, we tested the hypothesis that IMT would attenuate the increase in [lac(-)](B) caused by mimicking, at rest, the breathing pattern observed during high-intensity exercise. Twenty-two physically active males were matched for 85% maximal exercise minute ventilation (.

View Article and Find Full Text PDF