Publications by authors named "Graham Lyons"

Pacific Islanders have paid dearly for abandoning traditional diets, with diabetes and other non-communicable diseases (NCD) widespread. Starchy root crops like sweet potato, taro, and cassava are difficult to grow on the potassium-deficient soils of atolls, and high energy, low nutrient imported foods and drinks are popular. Nutritious, leafy food plants adapted to alkaline, salty, coral soils could form part of a food system strategy to reduce NCD rates.

View Article and Find Full Text PDF

Soil salinity and sodicity are major constraints to global cereal production, but breeding for tolerance has been slow. Narrow gene pools, over-emphasis on the sodium (Na) exclusion mechanism, little attention to osmotic stress/tissue tolerance mechanism(s) in which accumulation of inorganic ions such as Na is implicated, and lack of a suitable screening method have impaired progress. The aims of this study were to discover novel genes for Na accumulation using genome-wide association studies, compare growth responses to salinity and sodicity in low-Na bread Westonia with and genes and high-Na bread wheat Baart-46, and evaluate growth responses to salinity and sodicity in bread wheats with varying leaf Na concentrations.

View Article and Find Full Text PDF

Concurrent selenium and iodine deficiencies are widespread, in both developing and developed countries. Salt iodisation is insufficient to ensure global iodine adequacy, with an estimated one-third of humanity at risk of hypothyroidism and associated iodine deficiency disorders (IDD). Agronomic biofortification of food crops, especially staples such as cereals, which are consumed widely, may be an effective component of a food system strategy to reduce selenium and iodine malnutrition.

View Article and Find Full Text PDF

The separation of toxic effects of sodium (Na(+)) and chloride (Cl(-)) by the current methods of mixed salts and subsequent determination of their relevance to breeding has been problematic. We report a novel method (Na(+) humate) to study the ionic effects of Na(+) toxicity without interference from Cl(-), and ionic and osmotic effects when combined with salinity (NaCl). Three cereal species (Hordeum vulgare, Triticum aestivum and Triticum turgidum ssp.

View Article and Find Full Text PDF

Increased intake of selenium (Se) may reduce the risk of degenerative diseases including cancer but excessive intake may be toxic. Wheat is a major source of dietary Se in humans. However, the effect of Se from wheat that is agronomically biofortified with Se on biomarkers of human health status is unknown.

View Article and Find Full Text PDF

A supranutritional intake of selenium (Se) may be required for cancer prevention, but an excessively high dose could be toxic. Therefore, the effect on genome stability of seleno-L-methionine (Se-met), the most important dietary form of Se, was measured to determine its bioefficacy and safety limit. Peripheral blood lymphocytes were isolated from six volunteers and cultured with medium supplemented with Se-met in a series of Se concentrations (3, 31, 125, 430, 1880 and 3850 microg Se/litre) while keeping the total methionine (i.

View Article and Find Full Text PDF

The world's rare selenium resources need to be managed carefully. Selenium is extracted as a by-product of copper mining and there are no deposits that can be mined for selenium alone. Selenium has unique properties as a semi-conductor, making it of special value to industry, but it is also an essential nutrient for humans and animals and may promote plant growth and quality.

View Article and Find Full Text PDF

Selenium (Se) is an essential micronutrient for humans and animals, but is deficient in at least a billion people worldwide. Wheat (Triticum aestivum L.) is a major dietary source of Se.

View Article and Find Full Text PDF

More than 2 billion people consume diets that are less diverse than 30 years ago, leading to deficiencies in micronutrients, especially iron (Fe), zinc (Zn), selenium (Se), iodine (I), and also vitamin A. A strategy that exploits genetic variability to breed staple crops with enhanced ability to fortify themselves with micronutrients (genetic biofortification) offers a sustainable, cost-effective alternative to conventional supplementation and fortification programs. This is more likely to reach those most in need, has the added advantages of requiring no change in current consumer behaviour to be effective, and is transportable to a range of countries.

View Article and Find Full Text PDF

Selenium (Se) is an essential micronutrient for animals and humans, and wheat is a major dietary source of this element. It is important that postharvest processing losses of grain Se are minimized. This study, using grain dissection, milling with a Quadrumat mill, and baking and toasting studies, investigated the distribution of Se and other mineral nutrients in wheat grain and the effect of postharvest processing on their retention.

View Article and Find Full Text PDF

Biofortification of staple food crops with micronutrients by either breeding for higher uptake efficiency or fertilization can be an effective strategy to address widespread dietary deficiency in human populations. Selenium and iodine deficiencies affect a large proportion of the population in countries targeted for biofortification of staple crops with Zn, Fe, and vitamin A, and inclusion of Se and I would be likely to enhance the success of these programs. Interactions between Se and I in the thyroid gland are well established.

View Article and Find Full Text PDF

Objective: To assess trends in selenium status in South Australians from 1977 to 2002.

Design: Six cross-sectional surveys.

Participants: 117 participants in 1977, 30 in 1979, 96 and 103 (separate surveys) in 1987, 200 in 1988, and 288 volunteer blood donors in 2002.

View Article and Find Full Text PDF

The metalloid Se is ubiquitous in soils, but exists mainly in insoluble forms in high-Fe, low-pH and certain leached soils, and hence is often of limited availability to plants. Consequently, it is often supplied by plants to animals and human consumers at levels too low for optimum health. Se deficiency and suboptimality are manifested in populations as increased rates of thyroid dysfunction, cancer, severe viral diseases, cardiovascular disease and various inflammatory conditions.

View Article and Find Full Text PDF