The world's first full-scale, 280 nm UV LED reactor for wastewater disinfection was tested at flows of 545 and 817 m day. The system achieved > 3 average log reduction of total coliform at 545 m day and the 817 m day flow rate achieved over > 2.5 average log reduction for all operational conditions.
View Article and Find Full Text PDFThis study introduces a green method for preparing self-assembly hydrogels via polyelectrolyte complex (PEC) coacervation using chitosan, sulphated polysaccharides (chondroitin sulphate or fucoidan), and hydrolyzed collagen, followed by treatments, such as centrifugation, nanocellulose incorporation, algal fucoidan substitution, freezing-thawing, saline solution addition, and dialysis. Chitosan alters the non-gelling characteristics of chondroitin sulphate, fucoidan, and hydrolyzed collagen, initiating quick gelling. This study compared the effects of biopolymer concentrations, pHs, and treatments on hydrogel properties.
View Article and Find Full Text PDFThe COVID-19 pandemic has underscored the need for effective viral tracking in aqueous environments, particularly for non-enteric viruses. Despite advances in wastewater monitoring, surveillance of viruses in freshwater remains limited due to traditional sampling challenges. This study refines GAC-based passive sampling protocols by determining optimal extraction and elution methods for enhancing the recovery of viral nucleic acids in freshwater.
View Article and Find Full Text PDFFloating interfacial solar evaporation offers a land-saving, eco-friendly, and low-infrastructure alternative for freshwater production. However, challenges include maximizing heat localization, preventing salt accumulation, and operating under harsh environmental conditions. This work demonstrates a plasmonic titanium carbide (TiC) nanoparticle (NP)-based floating solar desalination system that produces clean water using sunlight on saline water sources.
View Article and Find Full Text PDFUV light emitting diode (LED) disinfection technologies have advanced over the last decade and expanded the design space for applications in point of use, industrial, and now full-scale water treatment. This literature review examines the progression of UV LED technologies from 2007 to 2023 using key features such as total optical power, price, and wall-plug efficiency. The review found that optical power is increasing while the price per Watt is decreasing; however, the wall plug energy (WPE) is slowly improving over the last decade.
View Article and Find Full Text PDFAeromonas salmonicida and Yersinia ruckeri are common pathogenic bacteria that impact salmonid aquaculture. Although vaccinations are available against both organisms, large-scale vaccination efforts can be expensive, cumbersome, and are not always reliable. Alternatively, these pathogens have been effectively inactivated using UV radiation from mercury-based systems.
View Article and Find Full Text PDFWater quality, critical for human survival and well-being, necessitates rigorous control to mitigate contamination risks, particularly from pathogens amid expanding urbanization. Consequently, the necessity to maintain the microbiological safety of water supplies demands effective surveillance strategies, reliant on the collection of representative samples and precise measurement of contaminants. This review critically examines the advancements of passive sampling techniques for monitoring pathogens in various water systems, including wastewater, freshwater, and seawater.
View Article and Find Full Text PDFThis study presents an updated analysis spanning over two decades (1999-2023) of climate, water quality, and operational data from two drinking water facilities in Atlantic Canada that previously experienced gradual increases in the natural organic matter (NOM) concentration and brownification. The goal was to assess the impact of recent extreme weather events on acute NOM concentration increases and drinking water treatment processes. In 2023, a dry spring combined with a warm and wet summer caused NOM in the water supplies to increase by >67% (as measured by color).
View Article and Find Full Text PDFPer- and poly-fluoroalkyl substances (PFAS) are synthetic chemicals widely used in everyday products, causing elevated concentrations in drinking water and posing a global challenge. While adsorption methods are commonly employed for PFAS removal, the substantial cost and environmental footprint of commercial adsorbents highlight the need for more cost-effective alternatives. Additionally, existing adsorbents exhibit limited effectiveness, particularly against diverse PFAS types, such as short-chain PFAS, necessitating modifications to enhance adsorption capacity.
View Article and Find Full Text PDFThis study assesses the efficacy of ultraviolet light-emitting diodes (UV LEDs) for deactivating (pure culture) and (pure culture and biofilms) on relevant drinking water distribution system surfaces (cast iron and stainless steel). UV LED treatment at 280 nm demonstrated superior performance compared to that at 365 nm, achieving a 4.8 log reduction value (LRV) for pure cultures and, for biofilms, 4.
View Article and Find Full Text PDFHuman viruses pose a significant health risk in freshwater environments, but current monitoring methods are inadequate for detecting viral presence efficiently. We evaluated a novel passive in-situ concentration method using granular activated carbon (GAC). This study detected and quantified eight enteric and non-enteric, pathogenic viruses in a freshwater recreational lake in paired grab and GAC passive samples.
View Article and Find Full Text PDFBioelectrochemical degradation is an environmentally friendly, cost-effective and controllable way of providing electron acceptor to the microorganisms. A two-chamber continuous-flow bioelectrochemical reactor (BER) was developed in this study. The objective was to investigate the potential for enhancing the bioelectrochemical degradation of 1,4-dioxane (DX) by Pseudonocardia dioxanivorans CB1190 (CB1190) and microbial community biofilm on conductive and non-conductive carriers in low potentials (1.
View Article and Find Full Text PDFManganese (Mn) control in surface water systems is a challenge for the drinking water industry, especially through a sustainability framework. Current methods for removing manganese from surface water use strong oxidants that embed carbon and can be expensive and harmful to human health and the environment. In this study, we used a simple biofilter design to remove manganese from lake water, without conventional surface water pre-treatments.
View Article and Find Full Text PDFCyanotoxins pose significant human health risks, but traditional monitoring approaches can be expensive, time consuming, and require analytical equipment or expertise that may not be readily available. Quantitative polymerase chain reaction (qPCR) is becoming an increasingly common monitoring strategy as detection of the genes responsible for cyanotoxin synthesis can be used as an early warning signal. Here we tested passive sampling of cyanobacterial DNA as an alternative to grab sampling in a freshwater drinking supply lake with a known history of microcystin-LR.
View Article and Find Full Text PDFA multiplex quantitative reverse transcription polymerase chain reaction (RT-qPCR)-based method was designed for the simultaneous detection of influenza A, SARS-CoV-2, respiratory syncytial virus, and measles virus. The performance of the multiplex assay was compared to four monoplex assays for relative quantification using standard quantification curves. Results showed that the multiplex assay had comparable linearity and analytical sensitivity to the monoplex assays, and the quantification parameters of both assays demonstrated minimal differences.
View Article and Find Full Text PDFUltraviolet (UV) disinfection has been incorporated into both drinking water and wastewater treatment processes for several decades; however, it comes with negative environmental consequences such as high energy demands and the use of mercury. Understanding how to scale and build climate responsive technologies is key in fulfilling the intersection of UN Sustainable Development Goals 6 and 13. One technology that addresses the drawbacks of conventional wastewater UV disinfection systems, while providing a climate responsive solution, is UV light emitting diodes (LEDs).
View Article and Find Full Text PDFReduced atmospheric acid deposition has given rise to recovery from acidification - defined as increasing pH, acid neutralization capacity (ANC), or alkalinity in surface waters. Strong evidence of recovery has been reported across North America and Europe, driving chemical responses. The primary chemical responses identified in this review were increasing concentration and changing character of natural organic matter (NOM) towards predominantly hydrophobic nature.
View Article and Find Full Text PDFOrthophosphate-polyphosphate blends are commonly used to control lead release into drinking water, but little is known about how they interact with lead corrosion scale. Conventional corrosion control practice assumes that orthophosphate controls lead release by forming insoluble Pb-phosphate minerals, but this does not always occur, and under certain conditions, phosphate blends may increase lead release. Here, we used continuously-stirred tank reactors to compare orthophosphate-polyphosphate blends with orthophosphate on the basis of lead (II) carbonate dissolution and transformation at environmentally relevant phosphate concentrations.
View Article and Find Full Text PDFOrthophosphate is widely used to control lead (Pb) release in drinking water distribution systems, but phosphorus addition is not sustainable. Alternative corrosion control treatments are needed, and sodium silicate is one possibility. Here, pre-corroded Pb coupons-with and without free chlorine-were used to examine early-phase corrosion scale development after silicate addition, with orthophosphate as a reference corrosion inhibitor.
View Article and Find Full Text PDFThis study aimed to develop a repeatable, reliable, high-throughput protocol to monitor bacterial growth in 96-well plates and analyze the maximum growth rate. The growth curves and maximum growth rates of two bacterial species were determined. Issues including (i) lid condensation, (ii) pathlength correction, (iii) inoculation size, (iv) sampling time interval, and (v) spatial bias were investigated.
View Article and Find Full Text PDFImmersive ultraviolet disinfection provides a chemical-free technology for safer textiles, surfaces, and public spaces by inactivating communicable pathogens. This study examined immersive UV disinfection, using a disinfection cabinet, of E. coli and MS2 that was inoculated on white cotton T-shirts.
View Article and Find Full Text PDFBased on recent studies, passive sampling is a promising method for detecting SARS-CoV-2 in wastewater surveillance (WWS) applications. Passive sampling has many advantages over conventional sampling approaches. However, the potential benefits of passive sampling are also coupled with apparent limitations.
View Article and Find Full Text PDFImplementation of water safety planning methods globally has focused primarily on developing an evidence base to demonstrate the benefits of the WSP methodology for risk management in water systems. However, little work has been completed to understand the appropriateness of the risk matrix method currently used to capture levels of risk for system-specific hazardous events. This study examines two quantitative risk calculations (probability density functions and event trees) compared to the risk matrix method employed in water safety planning.
View Article and Find Full Text PDF