Publications by authors named "Graham Bloomberg"

The WAVE family of proteins has long been implicated in the stimulus-dependent generation of lamellipodia at the leading edge of migrating cells, with WAVE2 in particular implicated in the formation of peripheral ruffles and chemotactic migration. However, the lack of direct visualisation of cell migration in WAVE2 mutants or knockdowns has made defining the mechanisms of WAVE2 regulation during cell migration difficult. We have characterised three MAP kinase phosphorylation sites within WAVE2 and analysed fibroblast behaviour in a scratch-wound model following introduction of transgenes encoding phospho-defective WAVE2.

View Article and Find Full Text PDF

NDRG1 is phosphorylated by SGK1 (but not PKB) in vivo at three residues each contained within three nonapeptide repeats. Here, we demonstrate that this nonapeptide, like the NDRG1 protein, is phosphorylated by SGK1, but not by PKBalpha or RSK1 in vitro. The inability of PKBalpha and RSK1 to phosphorylate the nonapeptide was traced to residues n+1, n+2 and n-4 (where n is the phosphorylation site).

View Article and Find Full Text PDF

Protein-tyrosine phosphatase-L1 (PTPL1, also known as FAP-1, PTP1E, PTP-BAS, and PTPN13) is mutated in a significant number of colorectal tumors and may play a role in down-regulating signaling responses mediated by phosphatidylinositol 3-kinase, although the precise substrates are as yet unknown. In this study, we describe a 1.8 A resolution crystal structure of a fully active fragment of PTPL1 encompassing the catalytic domain.

View Article and Find Full Text PDF

MSK1 (mitogen- and stress-activated protein kinase) is a kinase activated in cells downstream of both the ERK1/2 (extracellular-signal-regulated kinase) and p38 MAPK (mitogen-activated protein kinase) cascades. In the present study, we show that, in addition to being phosphorylated on Thr-581 and Ser-360 by ERK1/2 or p38, MSK1 can autophosphorylate on at least six sites: Ser-212, Ser-376, Ser-381, Ser-750, Ser-752 and Ser-758. Of these sites, the N-terminal T-loop residue Ser-212 and the 'hydrophobic motif' Ser-376 are phosphorylated by the C-terminal kinase domain of MSK1, and their phosphorylation is essential for the catalytic activity of the N-terminal kinase domain of MSK1 and therefore for the phosphorylation of MSK1 substrates in vitro.

View Article and Find Full Text PDF

We detected a protein in rabbit skeletal muscle extracts that was phosphorylated rapidly by SGK1 (serum- and glucocorticoid-induced kinase 1), but not by protein kinase Ba, and identified it as NDRG2 (N-myc downstream-regulated gene 2). SGK1 phosphorylated NDRG2 at Thr330, Ser332 and Thr348 in vitro. All three residues were phosphorylated in skeletal muscle from wild-type mice, but not from mice that do not express SGK1.

View Article and Find Full Text PDF

This paper describes the step-wise Fmoc solid phase synthesis of a 95-residue peptide related to FAS death domain. Attempts to prepare this peptide employing conventional amino acid building blocks failed. However, by the judicious use of dimethyloxazolidine dipeptides of serine and threonine, the peptide could be readily prepared in remarkable purity by applying single 1 h coupling reactions.

View Article and Find Full Text PDF

The synthesis of the Fmoc-protected C-glycosyl tyrosines 1 and 2, together with two other related C-glycosyl tyrosines, has been achieved. Key reactions involved (i) the reaction of a glycal with an organozinc reagent (carrying an aryl iodide function) in the presence of a Lewis acid to establish the C-glycosyl linkage and (ii) subsequent cross coupling of the aryl iodide to an alanyl zinc reagent (in the presence of a Pd(0) catalyst) to complete the construction of the alpha-amino acid moiety. Using solid-phase peptide synthesis methods, two units of the mannosyl derivative 1 (shown as L-Tyr[C-Ac(4)-alpha-D-Man]) have been incorporated (with four units of glycine) into the linear hexapeptide 3 which was then converted to the C(2)-symmetric cyclic oligopeptide 4.

View Article and Find Full Text PDF