The endothelial glycocalyx layer (EGL), which consists of long proteoglycans protruding from the endothelium, acts as a regulator of inflammation by preventing leukocyte engagement with adhesion molecules on the endothelial surface. The amount of resistance to adhesive events the EGL provides is the result of two properties: EGL thickness and stiffness. To determine these, we used an atomic force microscope to indent the surfaces of cultured endothelial cells with a glass bead and evaluated two different approaches for interpreting the resulting force-indentation curves.
View Article and Find Full Text PDFLoss of the microvascular (MV) network results in tissue ischemia, loss of tissue function, and is a hallmark of chronic diseases. The incorporation of a functional vascular network with that of the host remains a challenge to utilizing engineered tissues in clinically relevant therapies. We showed that vascular-bed-specific endothelial cells (ECs) exhibit differing angiogenic capacities, with kidney microvascular endothelial cells (MVECs) being the most deficient, and sought to explore the underlying mechanism.
View Article and Find Full Text PDFMicrofluidic systems are powerful tools for cell biology studies because they enable the precise addition and removal of solutes in small volumes. However, the fluid forces inherent in the use of microfluidics for cell cultures are sometimes undesirable. An important example is chemotaxis systems where fluid flow creates well-defined and steady chemotactic gradients but also pushes cells downstream.
View Article and Find Full Text PDF