Publications by authors named "Grafskaia E"

Study of mechanisms by which antibodies recognize different viral strains is necessary for the development of new drugs and vaccines to treat COVID-19 and other infections. Here, we report 2.5 Å cryo-EM structure of the SARS-CoV-2 Delta trimeric S-protein in complex with Fab of the recombinant analog of REGN10987 neutralizing antibody.

View Article and Find Full Text PDF

Human cell lines play an important role in biotechnology and pharmacology. For them to grow, they need complex nutrient media containing signaling proteins - growth factors. We have tested a new approach that reduces the need of cultured human cell lines for exogenous growth factors.

View Article and Find Full Text PDF

Gelatinous drop-like corneal dystrophy (GDLD) is a rare autosomal recessive eye disease. GDLD is characterized by the loss of barrier function in corneal epithelial cells (CECs) and amyloid deposition due to pathogenic variants in the TACSTD2 gene. Limbal stem cell transplantation (LSCT) has been suggested as an effective therapeutic alternative for patients with GDLD.

View Article and Find Full Text PDF

Advancements in medicine and pharmacology have led to the development of systems that deliver biologically active molecules inside cells, increasing drug concentrations at target sites. This improves effectiveness and duration of action and reduces side effects on healthy tissues. Cell-penetrating peptides (CPPs) show promise in this area.

View Article and Find Full Text PDF
Article Synopsis
  • The study found a new anticoagulant protein from the saliva of medicinal leeches, which showed strong ability to suppress blood coagulation.
  • This protein was tested against commonly used anticoagulants like hirudin and demonstrated superior inhibition in certain assays, though hirudin had better results in direct thrombin inhibition tests.
  • The newly identified protein shares similarities with antistatin, indicating it could potentially inhibit other proteins involved in blood coagulation.
View Article and Find Full Text PDF
Article Synopsis
  • Recombinant proteins from E. coli often have endotoxin contamination, which complicates their use.
  • Two methods were tested to create E. coli strains with lower lipopolysaccharide (LPS) levels: knocking out genes in the LPS biosynthesis pathway and increasing YciM protein expression.
  • Both approaches successfully reduced endotoxin levels in the purified eGFP samples.
View Article and Find Full Text PDF

Dysferlinopathy treatment is an active area of investigation. Gene therapy is one potential approach. We studied muscle regeneration and inflammatory response after injection of an AAV-9 with a codon-optimized DYSF gene.

View Article and Find Full Text PDF

Metal-organic framework nanoparticles (nanoMOFs) are promising nanomaterials for biomedical applications. Some of them, including biodegradable porous iron carboxylates are proposed for encapsulation and delivery of antibiotics. Due to the high drug loading capacity and fast internalization kinetics, nanoMOFs are more beneficial for the treatment of intracellular bacterial infections compared to free antibacterial drugs, which poorly accumulate inside the cells because of the inability to cross membrane barriers or have low intracellular retention.

View Article and Find Full Text PDF

Cationic antimicrobial peptides (CAMPs) have gained attention as promising antimicrobial therapeutics causing lower or no bacterial resistance. Considerable achievements have been made in designing new CAMPs that are highly active as antimicrobials. However, there is a lack of research on their interaction with biologically important proteins.

View Article and Find Full Text PDF

The life cycle of severe acute respiratory syndrome coronavirus 2 includes several steps that are supposedly mediated by liquid-liquid phase separation (LLPS) of the viral nucleocapsid protein (N) and genomic RNA. To facilitate the rational design of LLPS-targeting therapeutics, we modeled N-RNA biomolecular condensates in vitro and analyzed their sensitivity to several small-molecule antivirals. The model condensates were obtained and visualized under physiological conditions using an optimized RNA sequence enriched with N-binding motifs.

View Article and Find Full Text PDF

Cationic antimicrobial peptides (CAMPs) are considered as next-generation antibiotics with a lower probability of developing bacterial resistance. In view of potential clinical use, studies on CAMP biocompatibility are important. This work aimed to evaluate the behavior of synthetic short CAMPs (designed using bioinformatic analysis of the medicinal leech genome and microbiome) in direct contact with blood cells and plasma.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) are considered a promising new class of anti-infectious agents. This study reports new antimicrobial peptides derived from the microbiome identified by a computational analysis method applied to the metagenome. The identified AMPs possess a strong antimicrobial activity against Gram-positive and Gram-negative bacteria (MIC range: 5.

View Article and Find Full Text PDF

Background: Salivary cell secretion (SCS) plays a critical role in blood feeding by medicinal leeches, making them of use for certain medical purposes even today.

Results: We annotated the Hirudo medicinalis genome and performed RNA-seq on salivary cells isolated from three closely related leech species, H. medicinalis, Hirudo orientalis, and Hirudo verbana.

View Article and Find Full Text PDF

Genomes contain millions of short (<100 codons) open reading frames (sORFs), which are usually dismissed during gene annotation. Nevertheless, peptides encoded by such sORFs can play important biological roles, and their impact on cellular processes has long been underestimated. Here, we analyzed approximately 70,000 transcribed sORFs in the model plant (moss).

View Article and Find Full Text PDF

The rise of antibiotic resistance has necessitated the development of alternative strategies for the treatment of infectious diseases. Antimicrobial peptides (AMPs), components of the innate immune response in various organisms, are promising next-generation drugs against bacterial infections. The ability of the medicinal leech Hirudo medicinalis to store blood for months with little change has attracted interest regarding the identification of novel AMPs in this organism.

View Article and Find Full Text PDF

Background: Cryptic peptides (cryptides) are small bioactive molecules generated via degradation of functionally active proteins. Only a few examples of plant cryptides playing an important role in plant defense have been reported to date, hence our knowledge about cryptic signals hidden in protein structure remains very limited. Moreover, little is known about how stress conditions influence the size of endogenous peptide pools, and which of these peptides themselves have biological functions is currently unclear.

View Article and Find Full Text PDF

As essential conservative component of the innate immune systems of living organisms, antimicrobial peptides (AMPs) could complement pharmaceuticals that increasingly fail to combat various pathogens exhibiting increased resistance to microbial antibiotics. Among the properties of AMPs that suggest their potential as therapeutic agents, diverse peptides in the venoms of various predators demonstrate antimicrobial activity and kill a wide range of microorganisms. To identify potent AMPs, the study reported here involved a transcriptomic profiling of the tentacle secretion of the sea anemone Cnidopus japonicus.

View Article and Find Full Text PDF

The fragilysin (BFT) is a protein secreted by enterotoxigenic Bacteroides fragilis strains. BFT contains zinc-binding motif which was found in the metzincins family of metalloproteinases. In this study, we generated three known recombinant isoforms of BFT using Escherichia coli, tested their activity and examined whether E-cadherin is a substrate for BFTs.

View Article and Find Full Text PDF