Interactions between plants and herbivores promote evolutionary change. Studying the evolution of herbivore mechanisms aimed to cope with different host plant species is a critical intersection between evolutionary biology and sustainable pest management. Generalist herbivores are of particular interest, as hybridization between genetically distinct populations can increase the standing genetic variation and therefore the adaptive potential of the species.
View Article and Find Full Text PDFBiomolecular condensates have recently retained much attention given that they provide a fundamental mechanism of cellular organization. Among those, cytoplasmic ribonucleoprotein (RNP) granules selectively and reversibly concentrate RNA molecules and regulatory proteins, thus contributing to the spatiotemporal regulation of associated RNAs. Extensive in vitro work has unraveled the molecular and chemical bases of RNP granule assembly.
View Article and Find Full Text PDFStress granules (SGs) are cytoplasmic ribonucleoprotein condensates that dynamically and reversibly assemble in response to stress. They are thought to contribute to the adaptive stress response by storing translationally inactive mRNAs as well as signaling molecules. Recent work has shown that SG composition and properties depend on both stress and cell types, and that neurons exhibit a complex SG proteome and a strong vulnerability to mutations in SG proteins.
View Article and Find Full Text PDFGenome-wide association studies have identified 240 independent loci associated with type 2 diabetes (T2D) risk, but this knowledge has not advanced precision medicine. In contrast, the genetic diagnosis of monogenic forms of diabetes (including maturity-onset diabetes of the young (MODY)) are textbook cases of genomic medicine. Recent studies trying to bridge the gap between monogenic diabetes and T2D have been inconclusive.
View Article and Find Full Text PDFStress granules (SGs) are macromolecular assemblies induced by stress and composed of proteins and mRNAs stalled in translation initiation. SGs play an important role in the response to stress and in the modulation of signaling pathways. Furthermore, these structures are related to the pathological ribonucleoprotein (RNP) aggregates found in neurodegenerative disease contexts, highlighting the need to understand how they are formed and recycled in normal and pathological contexts.
View Article and Find Full Text PDFObjective: The molecular diagnosis of extreme forms of obesity, in which accurate detection of both copy number variations (CNVs) and point mutations, is crucial for an optimal care of the patients and genetic counseling for their families. Whole-exome sequencing (WES) has benefited considerably this molecular diagnosis, but its poor ability to detect CNVs remains a major limitation. We aimed to develop a method (CoDE-seq) enabling the accurate detection of both CNVs and point mutations in one step.
View Article and Find Full Text PDFNeuronal cells rely on macro- and micro-cellular compartmentalization to rapidly process information, and respond locally to external stimuli. Such a cellular organization is achieved via the assembly of neuronal ribonucleoprotein (RNP) granules, dynamic membrane-less organelles enriched in RNAs and associated regulatory proteins. In this review, we discuss how these high-order structures transport mRNAs to dendrites and axons, and how they contribute to the spatio-temporal regulation of localized mRNA translation.
View Article and Find Full Text PDFFragile X syndrome (FXS) is the most frequent inherited cause of intellectual disability and the best-studied monogenic cause of autism. FXS results from the functional absence of the fragile X mental retardation protein (FMRP) leading to abnormal pruning and consequently to synaptic communication defects. Here we show that FMRP is a substrate of the small ubiquitin-like modifier (SUMO) pathway in the brain and identify its active SUMO sites.
View Article and Find Full Text PDFStudy of monogenic forms of obesity has demonstrated the pivotal role of the central leptin-melanocortin pathway in controlling energy balance, appetite and body weight . The majority of loss-of-function mutations (mostly recessive or co-dominant) have been identified in genes that are directly involved in leptin-melanocortin signaling. These genes, however, only explain obesity in <5% of cases, predominantly from outbred populations .
View Article and Find Full Text PDFContext: The population of Guadeloupe Island exhibits a high prevalence of obesity.
Objective: We aimed to investigate whether rare genetic mutations in genes involved in monogenic obesity (or diabetes) might be causal in this population of Afro-Caribbean ancestry.
Design And Setting: This was a secondary analysis of a study on obesity conducted in schoolchildren from Guadeloupe in 2013 that aimed to assess changes in children's profiles after a lifestyle intervention program.
Neonatal diabetes mellitus (NDM) is a rare form of non-autoimmune diabetes usually diagnosed in the first 6 months of life. Various genetic defects have been shown to cause NDM with diverse clinical presentations and variable severity. Among transcriptional factor genes associated with isolated or syndromic NDM, a few cases of homozygous mutations in the NEUROG3 gene have been reported, all mutated patients presenting with congenital malabsorptive diarrhea with or without diabetes at a variable age of onset from early life to childhood.
View Article and Find Full Text PDFMolecular diagnosis of monogenic diabetes and obesity is of paramount importance for both the patient and society, as it can result in personalized medicine associated with a better life and it eventually saves health care spending. Genetic clinical laboratories are currently switching from Sanger sequencing to next-generation sequencing (NGS) approaches but choosing the optimal protocols is not easy. Here, we compared the sequencing coverage of 43 genes involved in monogenic forms of diabetes and obesity, and variant detection rates, resulting from four enrichment methods based on the sonication of DNA (Agilent SureSelect, RainDance technologies), or using enzymes for DNA fragmentation (Illumina Nextera, Agilent HaloPlex).
View Article and Find Full Text PDFInt J Obes (Lond)
February 2015
Background: A significant proportion of severe familial forms of obesity remain genetically elusive. Taking advantage of our unique cohort of multigenerational obese families, we aimed to assess the contribution of rare mutations in 29 common obesity-associated genes to familial obesity, and to evaluate in these families the putative presence of nine known monogenic forms of obesity.
Methods: Through next-generation sequencing, we sequenced the coding regions of 34 genes involved in polygenic and/or monogenic forms of obesity in 201 participants (75 normal weight individuals, 54 overweight individuals and 72 individuals with obesity class I, II or III) from 13 French families.
Objective: Accurate etiological diagnosis of monogenic forms of diabetes and obesity is useful as it can lead to marked improvements in patient care and genetic counseling. Currently, molecular diagnosis based on Sanger sequencing is restricted to only a few genes, as this technology is expensive, time-consuming, and labor-intensive. High-throughput next-generation sequencing (NGS) provides an opportunity to develop innovative cost-efficient methods for sensitive diabetes and obesity multigene screening.
View Article and Find Full Text PDFBackground: Maturity-onset of the young (MODY) is a clinically heterogeneous form of diabetes characterized by an autosomal-dominant mode of inheritance, an onset before the age of 25 years, and a primary defect in the pancreatic beta-cell function. Approximately 30% of MODY families remain genetically unexplained (MODY-X). Here, we aimed to use whole-exome sequencing (WES) in a four-generation MODY-X family to identify a new susceptibility gene for MODY.
View Article and Find Full Text PDFBorder Cells in the Drosophila ovaries are a useful genetic model for understanding the molecular events underlying epithelial cell motility. During stage 9 of egg chamber development they detach from neighboring stretched cells and migrate between the nurse cells to reach the oocyte. RNAi screening allowed us to identify the dapc1 gene as being critical in this process.
View Article and Find Full Text PDFBackground: Accurate molecular diagnosis of monogenic non-autoimmune neonatal diabetes mellitus (NDM) is critical for patient care, as patients carrying a mutation in KCNJ11 or ABCC8 can be treated by oral sulfonylurea drugs instead of insulin therapy. This diagnosis is currently based on Sanger sequencing of at least 42 PCR fragments from the KCNJ11, ABCC8, and INS genes. Here, we assessed the feasibility of using the next-generation whole exome sequencing (WES) for the NDM molecular diagnosis.
View Article and Find Full Text PDFA recent study suggested that four CD36 polymorphisms (namely rs3211867, rs3211883, rs3211908, and rs1527483) were associated with an increased risk of obesity, an increased BMI and percentage of body fat in European adolescents. We first attempted to confirm these results in three independent case-control genome-wide association studies (GWAS) data totaling 3,509 subjects of French and German origin, but we were unable to find any association of these variants with early onset obesity risk. We then genotyped the four CD36 single-nucleotide polymorphisms (SNPs) in a large population-based study of 4,667 Finnish subjects and we did not replicate any of the recently reported associations with BMI.
View Article and Find Full Text PDFIn genome-wide association (GWA) data from 2,151 nondiabetic French subjects, we identified rs1387153, near MTNR1B (which encodes the melatonin receptor 2 (MT2)), as a modulator of fasting plasma glucose (FPG; P = 1.3 x 10(-7)). In European populations, the rs1387153 T allele is associated with increased FPG (beta = 0.
View Article and Find Full Text PDFBackground: Recently, several Genome Wide Association (GWA) studies in populations of European descent have identified and validated novel single nucleotide polymorphisms (SNPs), highly associated with type 2 diabetes (T2D). Our aims were to validate these markers in other European and non-European populations, then to assess their combined effect in a large French study comparing T2D and normal glucose tolerant (NGT) individuals.
Methodology/principal Findings: In the same French population analyzed in our previous GWA study (3,295 T2D and 3,595 NGT), strong associations with T2D were found for CDKAL1 (OR(rs7756992) = 1.
Several studies have shown that healthy individuals with fasting plasma glucose (FPG) levels at the high end of the normal range have an increased risk of mortality. To identify genetic determinants that contribute to interindividual variation in FPG, we tested 392,935 single-nucleotide polymorphisms (SNPs) in 654 normoglycemic participants for association with FPG, and we replicated the most strongly associated SNP (rs560887, P = 4 x 10(-7)) in 9353 participants. SNP rs560887 maps to intron 3 of the G6PC2 gene, which encodes glucose-6-phosphatase catalytic subunit-related protein (also known as IGRP), a protein selectively expressed in pancreatic islets.
View Article and Find Full Text PDFPrevious studies have described genetic associations of the insulin gene variable number tandem repeat (INS VNTR) variant with childhood obesity and associated phenotypes. We aimed to assess the contribution of INS VNTR genotypes to childhood obesity and variance of insulin resistance, insulin secretion, and birth weight using family-based design. Participants were either French or German whites.
View Article and Find Full Text PDFRecently, Genome Wide Association (GWA) studies identified novel single nucleotide polymorphisms (SNPs), highly associated with type 2 diabetes (T2D) in several case-control studies of European descent. However, the impact of these markers on glucose homeostasis in a population-based study remains to be clarified. The French prospective D.
View Article and Find Full Text PDFIntroduction: We report a case of amyloid cardiopathy revealed by a cerebral embolism.
Case Report: A 55-year-old patient was admitted with a right hemiplegia and aphasia due to an infarction in the middle cerebral artery territory. Echocardiography was suggestive of an amyloid cardiopathy, and an IgG lambda multiple myeloma with renal insufficiency was discovered.