We present the genome assembly of the pennate diatom strain UHM3201 (Ochrophyta; Bacillariophyceae; Rhopalodiales; Rhopalodiaceae) and that of its cyanobacterial endosymbiont (Chroococcales: Aphanothecaceae). The genome sequence of the diatom is 60.3 megabases in span, and the cyanobacterial genome has a length of 2.
View Article and Find Full Text PDFThe "paradox of the great speciators" has puzzled evolutionary biologists for over half a century. A great speciator requires excellent dispersal propensity to explain its occurrence on multiple islands, but reduced dispersal ability to explain its high number of subspecies. A rapid reduction in dispersal ability is often invoked to solve this apparent paradox, but a proximate mechanism has not been identified yet.
View Article and Find Full Text PDFEnvironments are heterogeneous in space and time, and the permeability of landscape and climatic barriers to gene flow may change over time. When barriers are present, they may start populations down the path toward speciation, but if they become permeable before the process of speciation is complete, populations may once more merge. In Southern Africa, aridland biomes play a central role in structuring the organization of biodiversity.
View Article and Find Full Text PDFThe monophyly of the raptorial Circus genus (harriers) has never been in question, but the specific status of many, often vulnerable island endemic, taxa remains uncertain. Here we utilise one mitochondrial and three nuclear loci from all currently recognised Circus taxa (species and subspecies) to infer a robust phylogeny, to estimate the divergence date and to reconstruct the biogeographic origins of the Circus group. Our phylogeny supports both the monophyly of Circus and polyphyly of the genus Accipiter.
View Article and Find Full Text PDFThe recent, rapid radiation of Zosteropidae, coupled with their high levels of colonizing ability and phenotypic diversity, makes species delimitation within this family problematic. Given these problems, challenges to establish the mechanisms driving diversity and speciation within this group have arisen. Four morphologically distinct southern African Zosterops taxa, with a contentious taxonomic past, provide such a challenge.
View Article and Find Full Text PDF