Objectives: Opposed to other spectral CT techniques, fat quantification in dual-layer detector CT (dlCT) has only recently been developed. The impact of concomitant iron overload and dlCT-specific protocol settings such as the dose right index (DRI), a measure of image noise and tube current, on dlCT fat quantification was unclear. Further, spectral information became newly available <120 kV.
View Article and Find Full Text PDFObjectives: Fat quantification by dual-energy computed tomography (DECT) provides contrast-independent objective results, for example, on hepatic steatosis or muscle quality as parameters of prognostic relevance. To date, fat quantification has only been developed and used for source-based DECT techniques as fast kVp-switching CT or dual-source CT, which require a prospective selection of the dual-energy imaging mode.It was the purpose of this study to develop a material decomposition algorithm for fat quantification in phantoms and validate it in vivo for patient liver and skeletal muscle using a dual-layer detector-based spectral CT (dlsCT), which automatically generates spectral information with every scan.
View Article and Find Full Text PDFVertebral whole bone strength is substantially affected by cortical bone properties. Disease and therapy may affect cancellous and cortical bone differently. Unlike Dual X-ray Absorptiometry (DXA), Quantitative Computed Tomography (QCT) permits selective assessment of cortical and cancellous bone, but image quality limits the accuracy.
View Article and Find Full Text PDFPurpose Of Review: Finite element models simulate the mechanical response of bone under load, enabling noninvasive assessment of strength. Models generated from quantitative computed tomography (QCT) incorporate the geometry and spatial distribution of bone mineral density (BMD) to simulate physiological and traumatic loads as well as orthopaedic implant behaviour. The present review discusses the current strengths and weakness of finite element models for application to skeletal biomechanics.
View Article and Find Full Text PDF