Publications by authors named "Graeme E Batley"

Radioactive Ce in ionic (I-Ce), nano (N-Ce, 11 ± 9 nm mean primary particle size ± standard deviation) and micron-sized (M-Ce, 530 ± 440 µm) forms associated with natural and artificial diets in natural river water and synthetic freshwater were used to measure the real-time biokinetics of dietary Ce assimilation in a freshwater food chain. The model food chain consisted of microalgae (Raphidocelis subcapitata), snails (Potamopyrgus antipodarum) and prawns (Macrobrachium australiense). Pulse-chase experiments showed that 91-100 % of all forms of cerium associated with all diets and water types were eliminated from the digestive system of the snail and prawn within 24 h, with no detectable cerium assimilation.

View Article and Find Full Text PDF

Sewer overflows are an environmental concern due to their potential to introduce contaminants that can adversely affect downstream aquatic ecosystems. As these overflows can occur during rainfall events, the influence of rainwater ingress from inflow and infiltration on raw untreated wastewater (influent) within the sewer is a critical factor influencing the dilution and toxicity of the contaminants. The Vineyard sewer carrier in the greater city of Sydney, Australia, was selected for an ecotoxicological investigation of a sanitary (separate from stormwater) sewerage system and a wet-weather overflow (WWO).

View Article and Find Full Text PDF

Four representative sites in the greater city of Sydney, Australia, were selected for a study of the wet-weather overflow of sanitary (separate to stormwater) sewerage systems. Water samples were collected by autosamplers from up to eight wet weather overflow events over 16 months and from companion receiving water sites. The objective was to identify the risks posed by sewage contaminants to aquatic biota in the receiving waters, to aid in prioritising management actions.

View Article and Find Full Text PDF

Bioavailability models, for example, multiple linear regressions (MLRs) of water quality parameters, are increasingly being used to develop bioavailability-based water quality criteria for metals. However, models developed for the Northern Hemisphere cannot be adopted for Australia and New Zealand without first validating them against local species and local water chemistry characteristics. We investigated the applicability of zinc chronic bioavailability models to predict toxicity in a range of uncontaminated natural waters in Australia and New Zealand.

View Article and Find Full Text PDF

The toxicity of iron(III) in fresh waters has been detected at concentrations above the iron solubility limit, indicating a contribution of colloidal and particulate forms of iron(III) to the toxicity response. Current water quality guideline values for iron in fresh water are based on analytical determinations of filterable or total iron. Filtration, however, can underestimate bioavailable iron by retaining some of the colloidal fraction, and total determinations overestimate bioavailable iron measurements by recovering fractions of low bioavailability from suspended solids (e.

View Article and Find Full Text PDF

Sediments to be dredged as part of the installation of a harbor crossing in Sydney, Australia, contained measurable concentrations of dioxin-like compounds. To assess the suitability of these sediments for ocean disposal, a defensible sediment quality guideline value (SQGV) for dioxin-like compounds, expressed as pg toxic equivalent (TEQ) /g dry weight, was required. There were deemed to be too many uncertainties associated with a value derived using effects data from field studies.

View Article and Find Full Text PDF

Deep-sea tailings placement (DSTP) involves the oceanic discharge of tailings at depth (usually >100 m), with the intent of ultimate deposition of tailings solids on the deep-sea bed (>1000 m), well below the euphotic zone. DSTP discharges consist of a slurry of mine tailings solids (finely crushed rock) and residual process liquor containing low concentrations of metals, metalloids, flotation agents and flocculants. This slurry can potentially affect both pelagic and benthic biota inhabiting coastal waters, the continental slope and the deep-sea bed.

View Article and Find Full Text PDF

The current Australian and New Zealand default guideline value of 3 µg Cl/L for total residual chlorine in freshwaters is largely based on acute data converted to chronic data using a default acute to chronic ratio of 10, without consideration of chlorine decomposition. Given the rapid decomposition of chlorine, initially as hypochlorite and then as chloramine, it is appropriate to consider a guideline value based on short-term (acute) toxicity rather than one based on longer-term chronic data, as has been recommended for chlorine in marine waters. The literature on the fate of chlorine in drinking water discharged to freshwaters and on the ecotoxicity of total residual chlorine has been reviewed, and on the basis of this, revised default guideline values were derived for both hypochlorite and chloramine in freshwater using a species sensitivity distribution of toxicity data.

View Article and Find Full Text PDF

The absence of chronic toxicity data for tropical marine waters has limited our ability to derive appropriate water quality guideline values for metals in tropical regions. To aid environmental management, temperate data are usually extrapolated to other climatic (e.g.

View Article and Find Full Text PDF

Historical contamination of sediments from industries that commenced before environmental regulations were commonplace is prevalent in many large cities. This contamination is frequently overlain and mixed with more recent urban contamination. The remediation of contaminated sites is often a very expensive exercise and the final remediation criteria often reflect a trade-off between protecting human and ecological health and the finances of those deemed responsible for the site clean-up.

View Article and Find Full Text PDF

Chlorination is commonly used to control biofouling organisms, but chlorine rapidly hydrolyzes in seawater to hypochlorite, which undergoes further reaction with bromide, and then with organic matter. These reaction products, collectively termed chlorine-produced oxidants (CPOs), can be toxic to marine biota. Because the lifetime of the most toxic forms is limited to several days, appropriate guideline values need to be based on short-term (acute) toxicity tests, rather than chronic tests.

View Article and Find Full Text PDF

Metal concentrations are reported for a seagrass ecosystem receiving industrial inputs. δC and δN isotope ratios were used to establish trophic links. Copper concentrations (dry mass) ranged from <0.

View Article and Find Full Text PDF

The present review covers developments in studies of nanomaterials (NMs) in the environment since our much cited review in 2008. We discuss novel insights into fate and behavior, metrology, transformations, bioavailability, toxicity mechanisms, and environmental impacts, with a focus on terrestrial and aquatic systems. Overall, the findings were that: 1) despite substantial developments, critical gaps remain, in large part due to the lack of analytical, modeling, and field capabilities, and also due to the breadth and complexity of the area; 2) a key knowledge gap is the lack of data on environmental concentrations and dosimetry generally; 3) substantial evidence shows that there are nanospecific effects (different from the effects of both ions and larger particles) on the environment in terms of fate, bioavailability, and toxicity, but this is not consistent for all NMs, species, and relevant processes; 4) a paradigm is emerging that NMs are less toxic than equivalent dissolved materials but more toxic than the corresponding bulk materials; and 5) translation of incompletely understood science into regulation and policy continues to be challenging.

View Article and Find Full Text PDF

The unique physical and chemical properties of graphene-based nanomaterials (GNMs) have inspired a diverse range of scientific and industrial applications. The market value of GNMs is predicted to reach $US 1.3 billion by 2023.

View Article and Find Full Text PDF

Pharmaceuticals can enter freshwater and affect aquatic ecosystem health. Although toxicity tests have been carried out for the commonly used pharmaceuticals, evidence-based water quality guidelines have not been derived. High-reliability water quality guideline values have been derived for 4 pharmaceuticals-carbamazepine, diclofenac, fluoxetine, and propranolol-in freshwaters using a Burr type III distribution applied to species sensitivity distributions of chronic toxicity data.

View Article and Find Full Text PDF

As a consequence of coal-fired power station operations, elevated selenium concentrations have been reported in the sediments and biota of Lake Macquarie (New South Wales, Australia). In the present study, an ecosystem-scale model has been applied to determine how selenium in a seagrass food web is processed from sediments and water through diet to predators, using stable isotopes (δ(13) C and δ(15) N) to establish the trophic position of organisms. Trophic position, habitat, and feeding zone were examined as possible factors influencing selenium bioaccumulation.

View Article and Find Full Text PDF

Metal risk assessment of industrialized harbors and coastal marine waters requires the application of robust water quality guidelines to determine the likelihood of biological impacts. Currently there is no such guideline available for aluminium in marine waters. A water quality guideline of 24 µg total Al/L has been developed for aluminium in marine waters based on chronic 10% inhibition or effect concentrations (IC10 or EC10) and no-observed-effect concentrations (NOECs) from 11 species (2 literature values and 9 species tested including temperate and tropical species) representing 6 taxonomic groups.

View Article and Find Full Text PDF

Ensuring the health of aquatic ecosystems and identifying species at risk from the detrimental effects of environmental contaminants can be facilitated by integrating analytical chemical analysis with carefully selected biological endpoints measured in tissues of species of concern. These biological endpoints include molecular, biochemical, and physiological markers (i.e.

View Article and Find Full Text PDF

The increased use of silver nanomaterials presents a risk to aquatic systems due to the high toxicity of silver. The stability, dissolution rates and toxicity of citrate- and polyvinylpyrrolidone-coated silver nanoparticles (AgNPs) were investigated in synthetic freshwater and natural seawater media, with the effects of natural organic matter investigated in freshwater. When sterically stabilised by the large PVP molecules, AgNPs were more stable than when charge-stabilised using citrate, and were even relatively stable in seawater.

View Article and Find Full Text PDF

During the International Conference on Deriving Environmental Quality Standards for the Protection of Aquatic Ecosystems held in Hong Kong in December 2011, an expert group, comprising scientists, government officials, and consultants from four continents, was formed to discuss the important scientific and regulatory challenges with developing sediment quality guidelines (SQGs). We identified the problems associated with SQG development and made a series of recommendations to ensure that the methods being applied were scientifically defensible and internationally applicable. This document summarizes the key findings from the expert group.

View Article and Find Full Text PDF

Nanoparticulate cerium dioxide (nano-CeO2 ), when combusted as an additive to diesel fuel, was transformed from 6 nm to 14 nm sizes into particles near 43 nm, with no obvious change in the unit cell dimensions or crystalline form. Cerium sulfate, if formed during combustion, was below detection limits. Ceria nanoparticles were agglomerated within the soot matrix, with a mean aerodynamic diameter near 100 nm.

View Article and Find Full Text PDF