Importance: Outcomes research on the impact of seating and mobility services delivered using a short-term medical mission (STMM) model is limited.
Objective: To evaluate the impact of seating and mobility services on the occupational performance of individuals with disabilities in El Salvador.
Design: One-group retrospective pretest-posttest.
Purpose: This study aimed to determine the influence of acute resistance exercise (RE) and biological sex on subjective gastrointestinal (GI) symptoms, GI epithelial damage, and GI permeability in resistance-trained males and females.
Methods: Thirty resistance-trained men ( n = 15) and women ( n = 15) completed an RE bout and a nonexercise control (CON) session in a randomized counterbalanced design. The RE protocol used a load of 70% one-repetition maximum for 4 sets of 10 repetitions with a 90-s rest period length between sets and a 120-s rest period between exercises (squat, seated shoulder press, deadlift, bent-over row, and leg press).
This randomized clinical trial investigates whether withholding the standard 48 hours of intravenous empirical antibiotics immediately after birth in preterm infants protects the developing microbiome and improves clinical outcomes.
View Article and Find Full Text PDFErnieJ, a cluster C mycobacteriophage that infects Mycobacterium smegmatis mc155, was recovered from soil in Washington, DC. Its genome is 153,243 bp in size and encodes 227 predicted proteins, 30 tRNAs, and one transfer-messenger RNA (tmRNA). Ten percent of the predicted proteins have homologs in phages that infect nonmycobacterial Actinobacteria.
View Article and Find Full Text PDFThe microbiome comprises all the microbes living in and on the human body. Human cells are greatly outnumbered by bacterial cells; thus human health depends on the health of the microbial ecosystem. For the immature preterm infant, the microbiome also influences intestinal and immune system development.
View Article and Find Full Text PDFA new molecular-based velocity method is developed for high-temperature flame gases based on the hydroxyl tagging velocimetry (HTV) technique. In vibrationally excited HTV (VE-HTV), two photons from a KrF laser (248 nm) dissociate HO into a tag line of vibrationally excited OH (v=1). The excited state OH tag is selectively detected in a background of naturally occurring ground state OH (v=0).
View Article and Find Full Text PDFThe lack of readily available sterilization processes for medicine and dentistry practices in the developing world is a major risk factor for the propagation of disease. Modern medical facilities in the developed world often use autoclave systems to sterilize medical instruments and equipment and process waste that could contain harmful contagions. Here, we show the use of broadband light-absorbing nanoparticles as solar photothermal heaters, which generate high-temperature steam for a standalone, efficient solar autoclave useful for sanitation of instruments or materials in resource-limited, remote locations.
View Article and Find Full Text PDFPolarization is one of the basic properties of electromagnetic waves conveying valuable information in signal transmission and sensitive measurements. Conventional methods for advanced polarization control impose demanding requirements on material properties and attain only limited performance. We demonstrated ultrathin, broadband, and highly efficient metamaterial-based terahertz polarization converters that are capable of rotating a linear polarization state into its orthogonal one.
View Article and Find Full Text PDFPlasmonic nanostructures enable the generation of large electromagnetic fields confined to small volumes, potentially providing a route for the development of nanoengineered nonlinear optical media. A metal-capped hemispherical nanoparticle, also known as a nanocup, generates second harmonic light with increasing intensity as the angle between the incident fundamental beam and the nanocup symmetry axis is increased. Nanoparticle orientation also modifies the emission direction of the second harmonic light.
View Article and Find Full Text PDFCoherently coupled plasmons and excitons give rise to new optical excitations--plexcitons--due to the strong coupling of these two oscillator systems. Time-resolved studies of J-aggregate-Au nanoshell complexes when the nanoshell plasmon and J-aggregate exciton energies are degenerate probe the dynamical behavior of this coupled system. Transient absorption of the interacting plasmon-exciton system is observed, in dramatic contrast to the photoinduced transmission of the pristine J-aggregate.
View Article and Find Full Text PDFAu nanoparticles deposited on a metallic film act as nanoantenna receivers and transmitters for the coupling of free-space radiation into, and out of, 2D surface plasmons. Nanosteps, sub-10-nm gaps between metallic films of differing thickness, can also launch and detect surface plasmons. Here we use both types of structures to locally launch propagating surface plasmon waves and probe their properties.
View Article and Find Full Text PDFIt is well-known that the geometry of a nanoshell controls the resonance frequencies of its plasmon modes; however, the properties of the core material also strongly influence its optical properties. Here we report the synthesis of Au nanoshells with semiconductor cores of cuprous oxide and examine their optical characteristics. This material system allows us to systematically examine the role of core material on nanoshell optical properties, comparing Cu(2)O core nanoshells (ε(c) ∼ 7) to lower core dielectric constant SiO(2) core nanoshells (ε(c) = 2) and higher dielectric constant mixed valency iron oxide nanoshells (ε(c) = 12).
View Article and Find Full Text PDFA nanoparticle separated from a metallic surface by a few-nanometer thick polymer layer forms a nanoscale junction, or nanogap. Illuminating this structure with ultrashort optical pulses, exciting the plasmon resonance, results in a continuous, monitorable collapse of the nanogap. The four-wave mixing signal generated by this illumination of the nanogap provides a simultaneous monitoring of the collapse, increasing dramatically upon gap closure.
View Article and Find Full Text PDFMetallic nanoparticles influence the quantum yield and lifetime of adjacent fluorophores in a manner dependent on the properties of the nanostructure. Here we directly compare the fluorescence enhancement of the near-infrared fluorophore IR800 by Au nanoshells (NSs) and Au nanorods (NRs), where human serum albumin (HSA) serves as a spacer layer between the nanoparticle and the fluorophore. Our measurements reveal that the quantum yield of IR800 is enhanced from approximately 7% as an isolated fluorophore to 86% in a NSs-HSA-IR800 complex and 74% in a NRs-HSA-IR800 complex.
View Article and Find Full Text PDFOur understanding of how the geometry of metallic nanostructures controls the properties of their surface plasmons, based on plasmon hybridization, is useful for developing high-performance substrates for surface enhanced spectroscopies. In this tutorial review, we outline the design of metallic nanostructures tailored specifically for providing electromagnetic enhancements for surface enhanced Raman scattering (SERS). The concepts developed for nanoshell-based substrates can be generalized to other nanoparticle geometries and scaled to other spectroscopies, such as surface enhanced infrared absorption spectroscopy (SEIRA).
View Article and Find Full Text PDFNanoparticles are capable of both enhancing and suppressing the photocurrent in a silicon diode when deposited on the active face of the device. Photocurrent imaging of the individual nanoparticles and nanoparticle aggregates responsible for this effect reveals that Au nanospheres, nanoshells, and nanoshell dimers each exhibit unique wavelength-dependent suppression-enhancement characteristics. In contrast, silica nanospheres provide a sizable and relatively uniform photocurrent enhancement across the same spectral range (532-980 nm).
View Article and Find Full Text PDFWe show that a nanoparticle can serve as an efficient antenna for coupling of visible light into propagating plasmons of an Ag nanowire. For long wires, the coupling is maximal for incident light polarized perpendicular to the nanowire. For sub-10-mum nanowires, the polarization corresponding to maximum emission from the ends of the nanowire was found to be strongly dependent on the nanowire geometry and position of the vicinal nanoparticle.
View Article and Find Full Text PDFSingle-molecule detection with chemical specificity is a powerful and much desired tool for biology, chemistry, physics, and sensing technologies. Surface-enhanced spectroscopies enable single-molecule studies, yet reliable substrates of adequate sensitivity are in short supply. We present a simple, scaleable substrate for surface-enhanced Raman spectroscopy (SERS) incorporating nanometer-scale electromigrated gaps between extended electrodes.
View Article and Find Full Text PDFThe enhanced local optical fields at the surface of illuminated metallic nanoparticles and nanostructures are of intense fundamental and technological interest. Here we report a self-consistent measurement of the spatial extent of the fringing field above a plasmonic nanoparticle surface. Bifunctional DNA-based adsorbate molecules are used as nanoscale optical rulers, providing two distinct surface enhanced Raman scattering signals that vary independently in intensity as a function of distance from the nanoparticle surface.
View Article and Find Full Text PDFThe optical properties of metals arise both from optical excitation of interband transitions and their collective electronic, or plasmon, response. Here, we examine the optical properties of Cu, whose strong interband transitions dominate its optical response in the visible region of the spectrum, in a nanoshell geometry. This nanostructure permits the geometrical tuning of the nanoparticle plasmon energy relative to the onset of interband transitions in the metal.
View Article and Find Full Text PDFThe packing density of thiolated poly(ethylene glycol) (PEG) adsorbates on Au nanoshells is determined by exploiting the surface-enhanced Raman scattering response of individual nanoshell substrates. By incorporating the linker molecule p-mercaptoaniline (pMA), the number of 2000 MW and 5000 MW PEG molecules on each nanoparticle is determined by interpolation of the Langmuir isotherm for pMA. We conclude that both PEG adsorbates maintain a compact "brush" rather than an extended "mushroom" configuration on nanoshell surfaces.
View Article and Find Full Text PDFIntroduction: Since June 2004, CDC's BioIntelligence Center has monitored daily nationwide syndromic data by using the BioSense surveillance application.
Objectives: The BioSense application has been monitored by a team of full-time CDC analysts. This report examines their role in identifying and deciphering data anomalies.
Surface-enhanced Raman scattering (SERS) intensities for individual Au nanospheres, nanoshells, and nanosphere and nanoshell dimers coated with nonresonant molecules are measured, where the precise nanoscale geometry of each monomer and dimer is identified through in situ atomic force microscopy. The observed intensities correlate with the integrated quartic local electromagnetic field calculated for each specific nanostructure geometry. In this study, we find that suitably fabricated nanoshells can provide SERS enhancements comparable to nanosphere dimers.
View Article and Find Full Text PDF