Publications by authors named "Gradin K"

Chromatin compaction is a key biophysical property that influences multiple DNA transactions. Lack of chromatin accessibility is frequently used as proxy for chromatin compaction. However, we currently lack tools for directly probing chromatin compaction at individual genomic loci.

View Article and Find Full Text PDF

Upregulation of Notch3 expression has been reported in many cancers and is considered a marker for poor prognosis. Hypoxia is a driving factor of the Notch3 signaling pathway; however, the induction mechanism and role of hypoxia-inducible factor-1α (HIF-1α) in the Notch3 response are still unclear. In this study, we found that HIF-1α and poly [ADP-ribose] polymerase 1 (PARP-1) regulate Notch3 induction under hypoxia via a noncanonical mechanism.

View Article and Find Full Text PDF

Low oxygen levels (hypoxia) trigger a variety of adaptive responses with the Hypoxia-inducible factor 1 (HIF-1) complex acting as a master regulator. HIF-1 consists of a heterodimeric oxygen-regulated α subunit (HIF-1α) and constitutively expressed β subunit (HIF-1β) also known as aryl hydrocarbon receptor nuclear translocator (ARNT), regulating genes involved in diverse processes including angiogenesis, erythropoiesis and glycolysis. The identification of HIF-1 interacting proteins is key to the understanding of the hypoxia signaling pathway.

View Article and Find Full Text PDF

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

View Article and Find Full Text PDF

Hypertension in obesity is associated with increased insulin resistance, vascular mass and body mass index (BMI). The purpose of the study was to visualize endothelin-1 (ET-1) mediated constriction in arteries isolated from subcutaneous adipose tissue from obese hypertensive women previously operated by gastric bypass. Functional studies were conducted in a microvascular myograph.

View Article and Find Full Text PDF

Hypoxia causes dramatic changes in gene expression profiles, and the mechanism of hypoxia-inducible transcription has been analyzed for use as a model system of stress-inducible gene regulation. In this study, changes in chromatin organization in promoters of hypoxia-inducible genes were investigated during hypoxia-reoxygenation conditions. Most of the hypoxia-inducible gene promoters were hypersensitive to DNase I under both normal and hypoxic conditions, and our data indicate an immediate recruitment of transcription factors under hypoxic conditions.

View Article and Find Full Text PDF

Hypoxia-inducible factors (HIFs) play a central role in the transcriptional response to changes in oxygen availability. Stability of HIFs is regulated by multi-step reactions including recognition by the von Hippel-Lindau tumour suppressor protein (pVHL) in association with an E3 ligase complex. Here we show that pVHL physically interacts with fatty acid synthase (FASN), displacing the E3 ubiquitin ligase complex.

View Article and Find Full Text PDF

Hes1 is a Notch target gene that plays a major role during embryonic development. Previous studies have shown that HIF-1α can interact with the Notch intracellular domain and enhance Notch target gene expression. In this study, we have identified a Notch-independent mechanism that regulates the responsiveness of the Hes1 gene to hypoxia.

View Article and Find Full Text PDF

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is known as a mediator of toxic responses. Recently, it was shown that the AhR has dual functions. Besides being a transcription factor, it also possesses an intrinsic E3 ubiquitin ligase function that targets, e.

View Article and Find Full Text PDF

Hypoxia causes dramatic changes in the expression profiles of genes that encode glycolytic enzymes, vascular endothelial growth factors, erythropoietin, and other factors in a tissue-specific manner through activating hypoxia-inducible transcription factors (HIFs) such as HIF1α and HIF2α. It has been elucidated that the activity of HIFs is fundamentally regulated by their protein stability in an oxygen-dependent manner. However, little is known about how stabilized HIFs regulate transcription of their target genes in hypoxic cells.

View Article and Find Full Text PDF

Background: Hypoxia- and Myc-dependent transcriptional regulatory pathways are frequently deregulated in cancer cells. These pathways converge in many cellular responses, but the underlying molecular mechanisms are unclear.

Methods: The ability of Miz-1 and Arnt to interact was identified in a yeast two-hybrid screen.

View Article and Find Full Text PDF

Tumor progression is intrinsically tied to the clonal selection of tumor cells with acquired phenotypes allowing to cope with a hostile microenvironment. Hypoxia-inducible factors (HIFs) master the transcriptional response to local tissue hypoxia, a hallmark of solid tumors. Here, we report significantly longer patient survival in breast cancer with high levels of HIF-2α.

View Article and Find Full Text PDF

Activation of transcription in response to low oxygen tension is mediated by the hypoxia-inducible factor-1 (HIF-1). HIF-1 is a heterodimer of two proteins: aryl hydrocarbon receptor nuclear translocator and the oxygen-regulated HIF-1 alpha. The C-terminal activation domain of HIF-1 alpha has been shown to interact with cysteine/histidine-rich region 1 (CH1) of the coactivator CBP/p300 in a hypoxia-dependent manner.

View Article and Find Full Text PDF

Tumour-associated expression of CA IX (carbonic anhydrase IX) is to a major extent regulated by HIF-1 (hypoxia-inducible factor-1) which is important for transcriptional activation and consists of the oxygen-regulated subunit HIF-1alpha and the partner factor ARNT [AhR (aryl hydrocarbon receptor) nuclear translocator]. We have previously observed that HIF-1alpha competes with the AhR for interaction with ARNT under conditions when both conditionally regulated factors are activated. We have therefore investigated whether TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin)-induced activation of the AhR pathway might interfere with CA IX expression.

View Article and Find Full Text PDF

The present study investigated the mechanisms of vasodilatation of the human pancreatic polypeptide [cPP(1-7), NPY(19-23),Ala(31),Aib(32),Gln(34)]hPP (hPP) in mesenteric small arteries from Wistar Kyoto rats (WKY) and spontaneously hypertensive rats (SHR). The arteries were isolated and mounted in microvascular myographs for isometric tension recording. In vasopressin-contracted preparations with endothelium from WKY rats, hPP evoked concentration-dependent relaxations with maximal responses of 50+/-2% (n=5).

View Article and Find Full Text PDF

Endosialin is a transmembrane glycoprotein selectively expressed in blood vessels and stromal fibroblasts of various human tumours. It has been functionally implicated in angiogenesis, but the factors that control its expression have remained unclear. As insufficient delivery of oxygen is a driving force of angiogenesis in growing tumours, we investigated whether hypoxia regulates endosialin expression.

View Article and Find Full Text PDF

Double-stranded RNA (dsRNA) is formed in cells as intra- and intermolecular RNA interactions and is involved in a range of biological processes including RNA metabolism, RNA interference and translation control mediated by natural antisense RNA and microRNA. Despite this breadth of activities, few molecular tools are available to analyse dsRNA as native hybrids. We describe a two-step ligation method for enzymatic joining of dsRNA adaptors to any dsRNA molecule in its duplex form without a need for prior sequence or termini information.

View Article and Find Full Text PDF

Skin plays an essential role, mediated in part by its remarkable vascular plasticity, in adaptation to environmental stimuli. Certain vertebrates, such as amphibians, respond to hypoxia in part through the skin; but it is unknown whether this tissue can influence mammalian systemic adaptation to low oxygen levels. We have found that epidermal deletion of the hypoxia-responsive transcription factor HIF-1alpha inhibits renal erythropoietin (EPO) synthesis in response to hypoxia.

View Article and Find Full Text PDF

In order to functionally characterise the muscarinic vasodilator responses, effects of cholinergic agonists were studied on isolated preparations of the rat submandibular artery and vein and carotid and jugular vessels. Tentatively, a cholinergic regulatory mechanism having different effects on the arterial and venous vessels would enhance vascular fluid recruitment for the secretory response. In vitro functional findings were correlated to the expression and cellular location of the different receptors that were assessed by immunohistochemistry.

View Article and Find Full Text PDF

Cells adapt to hypoxia by a cellular response, where hypoxia-inducible factor 1alpha (HIF-1alpha) becomes stabilized and directly activates transcription of downstream genes. In addition to this "canonical" response, certain aspects of the pathway require integration with Notch signaling, i.e.

View Article and Find Full Text PDF

Premature senescence in vitro has been attributed to oxidative stress leading to a DNA damage response. In the absence of oxidative damage that occurs at atmospheric oxygen levels, proliferation of untransformed cells continues for extended periods of time. We have investigated the role of the hypoxia-inducible factor 1alpha (HIF1alpha) transcription factor in preventing senescence in aerobic and hypoxic conditions.

View Article and Find Full Text PDF

In neuroblastoma specimens, HIF-2alpha but not HIF-1alpha is strongly expressed in well-vascularized areas. In vitro, HIF-2alpha protein was stabilized at 5% O2 (resembling end capillary oxygen conditions) and, in contrast to the low HIF-1alpha activity at this oxygen level, actively transcribed genes like VEGF. Under hypoxia (1% O2), HIF-1alpha was transiently stabilized and primarily mediated acute responses, whereas HIF-2alpha protein gradually accumulated and governed prolonged hypoxic gene activation.

View Article and Find Full Text PDF

1. The present study addressed the role of neuropeptide (NPY) Y2 receptors in neurogenic contraction of mesenteric resistance arteries from female spontaneously hypertensive rats (SHR). Arteries were suspended in microvascular myographs, electrical field stimulation (EFS) was performed, and protein evaluated by Western blotting and immunohistochemistry.

View Article and Find Full Text PDF

The present study investigated whether sympathetic neurotransmission is altered at an early stage of diabetes in mesenteric small arteries isolated from female non-obese diabetic (NOD) and control animals without diabetes from the same mouse strain. The NOD diabetic mice had increased plasma glucose and hypertension. Confocal microscopy showed distribution of nerve terminals was similar, but immunoreaction intensity for neuropeptide Y (NPY) and tyrosine hydroxylase was higher in small arteries from NOD diabetic compared with NOD control mice.

View Article and Find Full Text PDF

Polybrominated diphenyl ethers (PBDEs) are brominated flame retardants that have been in use as additives in various consumer products. Structural similarities of PBDEs with other polyhalogenated aromatic hydrocarbons that show affinity for the aryl hydrocarbon receptor (AhR), such as some polychlorinated biphenyls, raised concerns about their possible dioxin-like properties. We studied the ability of environmentally relevant PBDEs (BDE-47, -99, -100, -153, -154, and -183) and the "planar" congener BDE-77 to bind and/or activate the AhR in stably transfected rodent hepatoma cell lines with an AhR-responsive enhanced green fluorescent protein (AhR-EGFP) reporter gene (H1G1.

View Article and Find Full Text PDF