Organophosphorus compounds are fundamental for the chemical industry due to their broad applications across multiple sectors, including pharmaceuticals, agrochemicals, and materials science. Despite their high importance, the sustainable and cost-effective synthesis of organophoshoryl derivatives remains very challenging. Here, we report the first successful regio- and stereoselective hydrophosphorylation of terminal allenamides using an affordable copper catalyst system.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2024
Given her unrivalled proficiency in the synthesis of all molecules of life, nature has been an endless source of inspiration for developing new strategies in organic chemistry and catalysis. However, one feature that remains thus far beyond chemists' grasp is her unique ability to adapt the productivity of metabolic processes in response to triggers that indicate the temporary need for specific metabolites. To demonstrate the remarkable potential of such stimuli-responsive systems, we present a metabolism-inspired network of multicatalytic processes capable of selectively synthesising a range of products from simple starting materials.
View Article and Find Full Text PDFA bifunctional ligand 4,4-dimethyl-1-(pyridin-4-yl)pentane-1,3-dione (HL) able to provide two distinct coordination sites, anionic β-diketonate (after deprotonation) and neutral pyridine, has been used in the synthesis of Ag(I), Pd(II) and Pt(II) complexes that then have been applied as metalloligands for the construction of new heterometallic polymeric materials. The ambidentate nature of L- enables switching between different modes of coordination within mononuclear complexes or their conversion into polymeric species in a fully controllable way. The coordination-driven processes can be triggered by various stimuli, a metal salt addition or acid-base equilibria, and presents an efficient strategy for the generation of metallosupramolecular materials.
View Article and Find Full Text PDFA wide range of functionalized pyridine ligands have been employed to synthesize a variety of Pd(II) complexes of the general formulas [Pd](NO) and [PdY], where = 4-X-py and Y = Cl or NO. Their structures have been unambiguously established via analytical and spectroscopic methods in solution (NMR spectroscopy and mass spectrometry) as well as in the solid state (X-ray diffraction). This in-depth characterization has shown that the functionalization of ligand molecules with groups of either electron-withdrawing or -donating nature (EWG and EDG) results in significant changes in the physicochemical properties of the desired coordination compounds.
View Article and Find Full Text PDFA range of morphologically distinct metallosupramolecular Cu(II) and Pd(II) complexes has been constructed, based on the tritopic ligand 1,1',1″-(benzene-1,3,5-triyl)tris(4,4-dimethylpentane-1,3-dione) (H). By control of the reaction conditions, it is possible to generate distinct coordination assemblies possessing either macrocyclic or polymeric structures and more importantly distinct activity in catalysis of the Suzuki-Miyaura cross-coupling.
View Article and Find Full Text PDFMetal-organic assemblies have received significant attention for catalytic and other applications, including gas and energy storage, due to their porosity and thermal/chemical stability. Here, we report the synthesis and physicochemical characterization of three metallosupramolecular assemblies consisting of isomeric ambidentate pyridyl--diketonate ligands L1-L3 and Cu(II) metal ions. It has been demonstrated that the topology and dimensionality of generated supramolecular aggregates depend on the location of the pyridine nitrogen donor atom in L1-L3.
View Article and Find Full Text PDF