Micromachines (Basel)
January 2022
The cavitation peening (CP) and cavitation abrasive jet polishing (CAJP) processes employ a cavitating jet to harden the surface or remove surface irregularities. However, a zero incidence angle between the jet and the surface limits the efficiency of these two processes. This limitation can be improved by introducing a secondary jet.
View Article and Find Full Text PDFComponent failures very often occur due to high temperature and multiaxial stress states arising at critical component locations. To imitate such loading conditions, a multiaxial miniature testing system (MMTS) with axial, torsional, and internal pressurization capabilities for high-temperature testing of miniature tubular specimens has been developed. Among many challenges of developing the MMTS, uniform heating, temperature measurement and control, and surface strain measurement on a miniature tubular specimen at high temperatures have significant difficulties.
View Article and Find Full Text PDFThe success of a microtube hydroforming (μTHF) process heavily depends on the material properties of microtubes, which can reveal the material response under multiaxial stress and influence the formability of hydroformed products. However, these material properties are not well understood because of the limited availability of material testing apparatus that would permit control of axial force and internal pressure simultaneously to mimic realistic μTHF loading. The main purpose of this study is to develop a set of grippers that can transfer required testing loads under fully coupled combinations of axial force and internal pressure.
View Article and Find Full Text PDFMaterials (Basel)
January 2016
Hydroforging is a hybrid forming operation whereby a thick tube is formed to a desired geometry by combining forging and hydroforming principles. Through this process hollow structures with high strength-to-weight ratio can be produced for applications in power transmission systems and other structural components that demands high strength-to-weight ratio. In this process, a thick tube is deformed by pressurized fluid contained within the tube using a multi-purpose punch assembly, which is also used to feed tube material into the die cavity.
View Article and Find Full Text PDFMicro-forming is a miniaturization technology with great potential for high productivity. Some technical challenges, however, need to be addressed before micro-forming becomes a commercially viable manufacturing process. These challenges include severe tribological conditions, difficulty in achieving desired tolerances, and short tool-life due to inability of available die materials to withstand the forces exerted on miniature dies and punches.
View Article and Find Full Text PDF