Publications by authors named "Graciela Piwien-Pilipuk"

The classic model of action of the glucocorticoid receptor (GR) sustains that its associated heat-shock protein of 90-kDa (HSP90) favours the cytoplasmic retention of the unliganded GR, whereas the binding of steroid triggers the dissociation of HSP90 allowing the passive nuclear accumulation of GR. In recent years, it was described a molecular machinery called transportosome that is responsible for the active retrograde transport of GR. The transportosome heterocomplex includes a dimer of HSP90, the stabilizer co-chaperone p23, and FKBP52 (FK506-binding protein of 52-kDa), an immunophilin that binds dynein/dynactin motor proteins.

View Article and Find Full Text PDF

The HSP90-binding immunophilin FKBP51 is a soluble protein that shows high homology and structural similarity with FKBP52. Both immunophilins are functionally divergent and often show antagonistic actions. They were first described in steroid receptor complexes, their exchange in the complex being the earliest known event in steroid receptor activation upon ligand binding.

View Article and Find Full Text PDF

There is a great body of evidence that the adipose organ plays a central role in the control not only of energy balance, but importantly, in the maintenance of metabolic homeostasis. Interest in the study of different aspects of its physiology grew in the last decades due to the pandemic of obesity and the consequences of metabolic syndrome. It was not until recently that the first evidence for the role of the high molecular weight immunophilin FK506 binding protein (FKBP) 51 in the process of adipocyte differentiation have been described.

View Article and Find Full Text PDF

Steroid receptors form soluble heterocomplexes with the 90-kDa heat-shock protein (Hsp90) and other chaperones and co-chaperones. The assembly and composition of the oligomer is influenced by the presence and nature of the bound steroid. Although these receptors shuttle dynamically in and out of the nucleus, their primary localization in the absence of steroid can be mainly cytoplasmic, mainly nuclear, or partitioned into both cellular compartments.

View Article and Find Full Text PDF

Inhibition of adipocyte differentiation can be used as a strategy for preventing adipose tissue expansion and, consequently, for obesity management. Since reactive oxygen species (ROS) have emerged as key modulators of adipogenesis, the effect of menadione (a synthetic form of vitamin K known to induce the increase of intracellular ROS) on 3T3-L1 preadipocyte differentiation was studied. Menadione (15 μM) increased ROS and lipid peroxidation, generating mild oxidative stress without affecting cell viability.

View Article and Find Full Text PDF

Long non-coding RNAs transcribed from telomeres, known as TERRA (telomeric repeat-containing RNA), are associated with telomere and genome stability. TERRA abundance responds to different cell stresses; however, no studies have focused on oxidative stress, condition that damages biomolecules and is involved in aging and disease. Since telomeres are prone to oxidative damage leading to their dysfunction, our objective was to characterize TERRAs and the mechanisms that control their expression.

View Article and Find Full Text PDF

FKBP51 and FKBP52 are two iconic members of the family of peptidyl-prolyl-(cis/trans)-isomerases (EC: 5.2.1.

View Article and Find Full Text PDF

Immunophilins are a family of proteins whose signature domain is the peptidylprolyl-isomerase domain. High molecular weight immunophilins are characterized by the additional presence of tetratricopeptide-repeats (TPR) through which they bind to the 90-kDa heat-shock protein (Hsp90), and via this chaperone, immunophilins contribute to the regulation of the biological functions of several client-proteins. Among these Hsp90-binding immunophilins, there are two highly homologous members named FKBP51 and FKBP52 (FK506-binding protein of 51-kDa and 52-kDa, respectively) that were first characterized as components of the Hsp90-based heterocomplex associated to steroid receptors.

View Article and Find Full Text PDF

Adipose tissue is a target of Trypanosoma cruzi infection being a parasite reservoir during the chronic phase in mice and humans. Previously, we reported that acute Trypanosoma cruzi infection in mice is linked to a severe adipose tissue loss, probably triggered by inflammation, as well as by the parasite itself. Here, we evaluated how infection affects adipose tissue homeostasis, considering adipocyte anabolic and catabolic pathways, the immune-endocrine pattern and the possible repercussion upon adipogenesis.

View Article and Find Full Text PDF

Confocal and electron microscopy images, and WB analysis of cellular fractions revealed that HP1γ is in the nucleus but also in the cytoplasm of C2C12 myoblasts, myotubes, skeletal and cardiac muscles, N2a, HeLa and HEK293T cells. Signal specificity was tested with different antibodies and by HP1γ knockdown. Leptomycin B treatment of myoblasts increased nuclear HP1γ, suggesting that its nuclear export is Crm-1-dependent.

View Article and Find Full Text PDF

Obesity is a serious health problem worldwide since it is a major risk factor for chronic diseases such as type II diabetes. Obesity is the result of hyperplasia (associated with increased adipogenesis) and hypertrophy (associated with decreased adipogenesis) of the adipose tissue. Therefore, understanding the molecular mechanisms underlying the process of adipocyte differentiation is relevant to delineate new therapeutic strategies for treatment of obesity.

View Article and Find Full Text PDF

Adipose tissue plays a central role in the control of energy balance as well as in the maintenance of metabolic homeostasis. It was not until recently that the first evidences of the role of heat shock protein (Hsp) 90 and high molecular weight immunophilin FKBP51 have been described in the process of adipocyte differentiation. Recent reports describe their role in the regulation of PPARγ, a key transcription factor in the control of adipogenesis and the maintenance of the adipocyte phenotype.

View Article and Find Full Text PDF

Hsp90 binding immunophilins FKBP51 and FKBP52 modulate steroid receptor trafficking and hormone-dependent biological responses. With the purpose to expand this model to other nuclear factors that are also subject to nuclear-cytoplasmic shuttling, we analyzed whether these immunophilins modulate NF-κB signaling. It is demonstrated that FKBP51 impairs both the nuclear translocation rate of NF-κB and its transcriptional activity.

View Article and Find Full Text PDF

The term molecular chaperone was first used to describe the ability of nucleoplasmin to prevent the aggregation of histones with DNA during the assembly of nucleosomes. Subsequently, the name was extended to proteins that mediate the post-translational assembly of oligomeric complexes protecting them from denaturation and/or aggregation. Hsp90 is a 90-kDa molecular chaperone that represents the major soluble protein of the cell.

View Article and Find Full Text PDF

Glucocorticoids play an important role in adipogenesis via the glucocorticoid receptor (GR) that forms a heterocomplex with Hsp90-Hsp70 and a high molecular weight immunophilin FKBP51 or FKBP52. We have found that FKBP51 level of expression progressively increases, FKBP52 decreases, whereas Hsp90, Hsp70, and p23 remain unchanged when 3T3-L1 preadipocytes differentiate. Interestingly, FKBP51 translocates from mitochondria to the nucleus at the onset of adipogenesis.

View Article and Find Full Text PDF

Glucocorticoids play an important role in adipogenesis through the glucocorticoid receptor (GR) that forms a heterocomplex with Hsp90•Hsp70 and one high molecular weight immunophilin, either FKBP51 or FKBP52. When 3T3-L1 preadipocytes are induced to differentiate, FKBP51 expression progressively increases, whereas FKBP52 decreases, and Hsp90, Hsp70, p23 and Cyp40 remain unchanged. Interestingly, FKBP51 rapidly translocates from mitochondria to the nucleus where it is retained upon its interaction with chromatin and the nuclear matrix.

View Article and Find Full Text PDF

Background: Obesity is a serious health problem all over the world, and inhibition of adipogenesis constitutes one of the therapeutic strategies for its treatment. Carnosic acid (CA), the main bioactive compound of Rosmarinus officinalis extract, inhibits 3T3-L1 preadipocytes differentiation. However, very little is known about the molecular mechanism responsible for its antiadipogenic effect.

View Article and Find Full Text PDF

Cytoskeletal structure is continually remodeled to accommodate normal cell growth and to respond to pathophysiological cues. As a consequence, several cytoskeleton-interacting proteins become involved in a variety of cellular processes such as cell growth and division, cell movement, vesicle transportation, cellular organelle location and function, localization and distribution of membrane receptors, and cell-cell communication. Molecular chaperones and immunophilins are counted among the most important proteins that interact closely with the cytoskeleton network, in particular with microtubules and microtubule-associated factors.

View Article and Find Full Text PDF

Confocal microscopy images revealed that the tetratricopeptide repeat motif (TPR) domain immunophilin FKBP51 shows colocalization with the specific mitochondrial marker MitoTracker. Signal specificity was tested with different antibodies and by FKBP51 knockdown. This unexpected subcellular localization of FKBP51 was confirmed by colocalization studies with other mitochondrial proteins, biochemical fractionation, and electron microscopy imaging.

View Article and Find Full Text PDF

Regulation of c-Fos transcription by GH is mediated by CCAAT/enhancer binding protein β (C/EBPβ). This study examines the role of C/EBPβ in mediating GH activation of other early response genes, including Cyr61, Btg2, Socs3, Zfp36, and Socs1. C/EBPβ depletion using short hairpin RNA impaired responsiveness of these genes to GH, as seen for c-Fos.

View Article and Find Full Text PDF

How the co-ordinated events of gene activation and silencing during cellular differentiation are influenced by spatial organization of the cell nucleus is still poorly understood. Little is known about the molecular mechanisms controlling subnuclear distribution of transcription factors, and their interplay with nuclear proteins that shape chromatin structure. Here we show that C/EBPβ not only associates with pericentromeric heterochromatin but also interacts with the nucleoskeleton upon induction of adipocyte differentiation of 3T3-L1 cells.

View Article and Find Full Text PDF

In the absence of hormone, corticosteroid receptors such as GR (glucocorticoid receptor) and (mineralocorticoid receptor) are primarily located in the cytoplasm. Upon steroid-binding, they rapidly accumulate in the nucleus. Regardless of their primary location, these receptors and many other nuclear factors undergo a constant and dynamic nucleocytoplasmic shuttling.

View Article and Find Full Text PDF

FKBP51 and FKBP52 (FK506-binding protein 51 and 52) are tetratricopeptide repeat-domain immunophilins belonging to the tetratricopeptide-protein•hsp90•hsp70•p23 heterocomplex bound to steroid receptors. Immunophilins are related to receptor folding, subcellular localization, and hormone-dependent transcription. Also, they bind the immunosuppressant macrolide FK506, which shows neuroregenerative and neuroprotective actions by a still unknown mechanism.

View Article and Find Full Text PDF

In this study, we demonstrate that the subcellular localization of the mineralocorticoid receptor (MR) is regulated by tetratricopeptide domain (TPR) proteins. The high-molecular-weight immunophilin (IMM) FKBP52 links the MR-hsp90 complex to dynein/dynactin motors favoring the cytoplasmic transport of MR to the nucleus. Replacement of this hsp90-binding IMM by FKBP51 or the TPR peptide favored the cytoplasmic localization of MR.

View Article and Find Full Text PDF

Glucocorticoid receptor (GR) is cytoplasmic in the absence of ligand and localizes to the nucleus after steroid binding. Previous evidence demonstrated that the hsp90-based heterocomplex bound to GR is required for the efficient retrotransport of the receptor to the nuclear compartment. We examined the putative association of GR and its associated chaperone heterocomplex with structures of the nuclear pore.

View Article and Find Full Text PDF