Background: The diagnosis of T-cell lymphomas is typically established through a multiparameter approach that combines clinical, morphologic, immunophenotypic, and genetic features, utilizing a variety of histopathologic and molecular techniques. However, accurate diagnosis of such lymphomas and distinguishing them from reactive lymph nodes remains challenging due to their low prevalence and heterogeneous features, hence limiting the confidence of pathologists. We investigated the use of microRNA (miRNA) expression signatures as an adjunctive tool in the diagnosis and classification of T-cell lymphomas that involve lymph nodes.
View Article and Find Full Text PDFOncogenic mutations in the RAS family of small GTPases are commonly found in human cancers and they promote tumorigenesis by altering gene expression networks. We previously demonstrated that Casein Kinase 1α (CK1α), a member of the CK1 family of serine/threonine kinases, is post-transcriptionally upregulated by oncogenic RAS signaling. Here, we report that the CK1α mRNA contains an exceptionally long 5'-untranslated region (UTR) harbouring several translational control elements, implicating its involvement in translational regulation.
View Article and Find Full Text PDFAutophagy is a fundamental cellular homeostasis mechanism known to play multifaceted roles in the natural history of cancers over time. It has recently been shown that autophagy also mediates the crosstalk between the tumor and its microenvironment by promoting the export of molecular payloads such as non-coding RNA (ncRNAs) via LC3-dependent Extracellular Vesicle loading and secretion (LDELS). In turn, the dynamic exchange of exosomal ncRNAs regulate autophagic responses in the recipient cells within the tumor microenvironment (TME), for both tumor and stromal cells.
View Article and Find Full Text PDFCircadian rhythms are intrinsic ~24 hour cycles that regulate diverse aspects of physiology, and in turn are regulated by interactions with the external environment. Casein kinase 1 delta (CK1δ, CSNK1D) is a key regulator of the clock, phosphorylating both stabilizing and destabilizing sites on the PER2 protein, in a mechanism known as the phosphoswitch. CK1δ can itself be regulated by phosphorylation on its regulatory domain, but the specific sites involved, and the role this plays in control of circadian rhythms as well as other CK1-dependent processes is not well understood.
View Article and Find Full Text PDFPeriod (PER) protein phosphorylation is a critical regulator of circadian period, yet an integrated understanding of the role and interaction between phosphorylation sites that can both increase and decrease PER2 stability remains elusive. Here, we propose a phosphoswitch model, where two competing phosphorylation sites determine whether PER2 has a fast or slow degradation rate. This mathematical model accurately reproduces the three-stage degradation kinetics of endogenous PER2.
View Article and Find Full Text PDF