The structure and growth of the solid electrolyte interphase (SEI) region between an electrolyte and an electrode is one of the most fundamental yet less well-understood phenomena in solid-state batteries. We present an atomistic simulation of the SEI growth for one of the currently promising solid electrolytes (LiPSCl), based on ab initio-trained machine learning interatomic potentials, for over 30,000 atoms during 10 ns, well beyond the capabilities of conventional molecular dynamics. This unveils a two-step growth mechanism: a Li-argyrodite chemical reaction leading to the formation of an amorphous phase, followed by a kinetically slower crystallization of the reaction products into a 5LiS·LiP·LiCl solid solution.
View Article and Find Full Text PDFThe structural asymmetry of two-dimensional (2D) Janus transition-metal dichalcogenides (TMDs) produces internal dipole moments that result in interesting electronic properties. These properties differ from the regular (symmetric) TMD structures that the Janus structures are derived from. In this study, we, first, examine adsorption and diffusion of a single Li atom on regular MX and Janus MXY (M = Mo, W; XY = S, Se, Te) TMD structures at various concentrations using first-principles calculations within density functional theory.
View Article and Find Full Text PDFRecently, 2D tellurene (Te) structures have been experimentally synthesized. These structures possess high carrier mobility and stability which make them ideal candidates for applications in electronics, optoelectronics and energy devices. We performed density functional theory (DFT) and molecular dynamics (MD) simulations to investigate the stability and electronic structure of 2D α- and β-Te sheets, and hydrogen, oxygen, and fluorine functionalized counterparts, including spin-orbit coupling effects.
View Article and Find Full Text PDF