Publications by authors named "Gracia Merino"

The ABCG2 membrane transporter affects bioavailability and milk secretion of xenobiotics and natural compounds, including vitamins such as riboflavin. We aimed to characterize the in vitro and in vivo interaction of ABCG2 with lumichrome, the main photodegradation product of riboflavin, which has proven in vitro anti-cancer activity and a therapeutical role in antibacterial photodynamic therapy as an efficient photosensitizer. Using MDCK-II polarized cells overexpressing murine Abcg2 and human ABCG2 we found that lumichrome was efficiently transported by both variants.

View Article and Find Full Text PDF

Breast cancer resistance protein/ATP-binding cassette subfamily G2 (BCRP/ABCG2) is an ATP-binding cassette efflux (ABC) transporter expressed in the apical membrane of cells in tissues, such as the liver, intestine, kidney, testis, brain, and mammary gland. It is involved in xenobiotic pharmacokinetics, potentially affecting the efficacy and toxicity of many drugs. In this study, the role of ABCG2 in parasiticide monepantel (MNP) and its primary metabolite, monepantel sulfone (MNPSO)'s systemic distribution and excretion in milk, was tested using female and male wild-type and Abcg2 mice.

View Article and Find Full Text PDF

The ABCG2 transporter plays a key role in pharmacological and toxicological processes, affecting bioavailability, tissue accumulation and milk secretion of its substrates. This protein is expressed in several biological barriers acting as a protective mechanism against xenobiotic exposure by pumping out a broad range of compounds. However, its induced expression during lactation in alveolar cells of mammary gland represents a relevant route for active transport of unwanted chemicals into milk.

View Article and Find Full Text PDF

Thiabendazole (TBZ) is a broad-spectrum anthelmintic and fungicide used in humans, animals, and agricultural commodities. TBZ residues are present in crops and animal products, including milk, posing a risk to food safety and public health. ABCG2 is a membrane transporter which affects bioavailability and milk secretion of xenobiotics.

View Article and Find Full Text PDF

In veterinary field, drug exposure during milk production in dairy cattle is considered a major health problem which concerns dairy consumers. The induced expression of the ABC transporter G2 (ABCG2) in the mammary gland during lactation plays a significant role in the active secretion of many compounds into milk. The main objective of this study was to determine the involvement of ABCG2 in the secretion into milk of the antiparasitic clorsulon in sheep as well as the possible effect of the coadministration of model ABCG2 inhibitors such as macrocyclic lactones on this process.

View Article and Find Full Text PDF

Clorsulon is a benzenesulfonamide drug that is effective in treating helminthic zoonoses such as fascioliasis. When used in combination with the macrocyclic lactone ivermectin, it provides high broad-spectrum antiparasitic efficacy. The safety and efficacy of clorsulon should be studied by considering several factors such as drug-drug interactions mediated by ATP-binding cassette (ABC) transporters due to their potential effects on the pharmacokinetics and drug secretion into milk.

View Article and Find Full Text PDF

ABCG2 is an ATP-binding cassette efflux transporter that is expressed in absorptive and excretory organs such as liver, intestine, kidney, brain and testis where it plays a crucial physiological and toxicological role in protecting cells against xenobiotics, affecting pharmacokinetics of its substrates. In addition, the induction of ABCG2 expression in mammary gland during lactation is related to active secretion of many toxicants into milk. In this study, the in vitro interactions between ABCG2 and three pesticides flupyradifurone, bupirimate and its metabolite ethirimol were investigated to check whether these compounds are substrates and/or inhibitors of this transporter.

View Article and Find Full Text PDF

The ATP-binding cassette G2 (ABCG2) is an efflux transporter expressed in the apical membrane of cells from a large number of tissues, directly affecting bioavailability, tissue accumulation, and secretion into milk of both xenobiotics and endogenous compounds. The aim of this work was to characterize the role of ABCG2 in the systemic distribution and secretion into milk of melatonin and its main metabolites, 6-hydroxymelatonin, and 6-sulfatoxymelatonin. For this purpose, we first showed that these three molecules are transported by this transporter using in vitro transepithelial assays with MDCK-II polarized cells transduced with different species variants of ABCG2.

View Article and Find Full Text PDF

The ATP-binding cassette transporter G2 (ABCG2) is an efflux protein involved in the bioavailability and secretion into milk of several compounds including anti-inflammatory drugs. The aim of this work was to determine the effect in sheep of an ABCG2 inhibitor, such as the macrocyclic lactone ivermectin, on the secretion into milk of meloxicam, a non-steroidal anti-inflammatory drug widely used in veterinary medicine, and recently reported as an ABCG2 substrate. In vitro meloxicam transport assays in ovine ABCG2-transduced cells have shown that ivermectin is an efficient inhibitor of in vitro transport of meloxicam mediated by ovine ABCG2, with a 75% inhibition in the transport ratio (24.

View Article and Find Full Text PDF

Albendazole (ABZ) is an anthelmintic with a broad-spectrum activity, widely used in human and veterinary medicine. ABZ is metabolized in all mammalian species to albendazole sulfoxide (ABZSO), albendazole sulfone (ABZSO) and albendazole 2-aminosulphone (ABZSO-NH). ABZSO and ABZSO are the main metabolites detected in plasma and all three are detected in milk.

View Article and Find Full Text PDF

The Breast Cancer Resistance Protein (BCRP/ABCG2) is an ATP-binding cassette efflux transporter that is expressed in the apical membrane of cells from relevant tissues involved in drug pharmacokinetics such as liver, intestine, kidney, testis, brain and mammary gland, among others. Tolfenamic acid is an anti-inflammatory drug used as an analgesic and antipyretic in humans and animals. Recently, tolfenamic acid has been repurposed as an antitumoral drug and for use in chronic human diseases such as Alzheimer.

View Article and Find Full Text PDF

Therapeutic outcome results of the coadministration of several drugs in veterinary medicine is affected by, among others, the relationship between drugs and ATP-binding cassette (ABC) transporters, such as ABCG2. ABCG2 is an efflux protein involved in the bioavailability and milk secretion of drugs. The aim of this work was to determine the role of eprinomectin, a macrocyclic lactone (ML) member of avermectin class, as inhibitor of ABCG2.

View Article and Find Full Text PDF

ATP-binding cassette transporter G2 (ABCG2) is involved in the secretion of several compounds in milk. The in vitro and in vivo interactions between tryptophan-related compounds and ABCG2 were investigated. The tryptophan metabolome was determined by liquid chromatography-tandem mass spectrometry in milk and plasma from wild-type and Abcg2 mice as well as dairy cows carrying the ABCG2 Y581S polymorphism (Y/S) and noncarrier animals (Y/Y).

View Article and Find Full Text PDF

ATP-binding cassette (ABCG2) is an efflux transporter that extrudes xenotoxins from cells in liver, intestine, mammary gland, brain and other organs, affecting the pharmacokinetics, brain accumulation and secretion into milk of several compounds, including antitumoral, antimicrobial and anti-inflammatory drugs. The aim of this study was to investigate whether the widely used anti-inflammatory drug meloxicam is an Abcg2 sustrate, and how this transporter affects its systemic distribution. Using polarized ABCG2-transduced cell lines, we found that meloxicam is efficiently transported by murine Abcg2 and human ABCG2.

View Article and Find Full Text PDF

A large number of nutrients and bioactive ingredients found in milk play an important role in the nourishment of breast-fed infants and dairy consumers. Some of these ingredients include physiologically relevant compounds such as vitamins, peptides, neuroactive compounds and hormones. Conversely, milk may contain substances-drugs, pesticides, carcinogens, environmental pollutants-which have undesirable effects on health.

View Article and Find Full Text PDF

Flunixin meglumine is a nonsteroidal anti-inflammatory drug (NSAID) widely used in veterinary medicine. It is indicated to treat inflammatory processes, pain, and pyrexia in farm animals. In addition, it is one of the few NSAIDs approved for use in dairy cows, and consequently gives rise to concern regarding its milk residues.

View Article and Find Full Text PDF

Background: Flaxseed is the most common and rich dietary source of lignans and is an acceptable supply of energy for livestock. Flaxseed lignans are precursors of enterolignans, mainly enterolactone and enterodiol, produced by the rumen and intestinal microbiota of mammals and have many important biological properties as phytoestrogens. Potential food-drug interactions involving flaxseed may be relevant for veterinary therapy, and for the quality and safety of milk and dairy products.

View Article and Find Full Text PDF

Lignans are dietary polyphenols, which are metabolized by gut microbiota into the phytoestrogenic metabolites enterolignans, mainly enterolactone and enterodiol. Breast Cancer Resistance Protein (BCRP/ABCG2) is an efflux transporter that affects the plasma and milk secretion of several drugs and natural compounds. We hypothesized here that Abcg2 could influence the levels of lignans and their derived metabolites in target tissues.

View Article and Find Full Text PDF

Background: The aqueous ethanolic extract from leaves of the marine plant Thalassia testudinum has shown antioxidant, cytoprotective, and neuroprotective properties. The chemical composition of this extract, rich in polyphenols, could interfere with active transport of drugs out of the cell and circumvent the phenomenon of multidrug resistance (MDR). The extract can act as an MDR modulator through its interaction with efflux transporters.

View Article and Find Full Text PDF

The ATP binding cassette (ABC) transporters ABCG2 and ABCB1 perform ATP hydrolysis-dependent efflux of structurally highly diverse compounds, collectively called allocrites. Whereas much is known about allocrite-ABCB1 interactions, the chemical nature and strength of ABCG2-allocrite interactions have not yet been assessed. We quantified and characterized interactions of allocrite with ABCG2 and ABCB1 using a set of 39 diverse compounds.

View Article and Find Full Text PDF

Colocalized in membrane barriers, the ABC transporters ABCB1 and ABCG2 strongly contribute to multidrug resistance (MDR). Here we investigate the as yet unknown mechanisms of activation and inhibition of ABCG2. For this purpose we measured the ATPase activity of ABCG2 and ABCB1 as a function of allocrite concentration using a calibration set of 30 diverse compounds and a validation set of 23 compounds.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) is the main entry route for chemicals into the mammalian central nervous system (CNS). Two transmembrane transporters of the ATP-binding cassette (ABC) family - breast cancer resistance protein (ABCG2 in humans, Abcg2 in rodents) and P-glycoprotein (ABCB1 in humans, Abcb1 in rodents) - play a key role in mediating this process. Pharmacological and genetic evidence suggests that Abcg2 prevents CNS access to a group of highly potent and selective O-arylcarbamate fatty-acid amidohydrolase (FAAH) inhibitors, which include the compound URB937 (cyclohexylcarbamic acid 3'-carbamoyl-6-hydroxybiphenyl-3-yl ester).

View Article and Find Full Text PDF

Lignans are phytoestrogens that are metabolized by the gut microbiota to enterodiol and enterolactone, the main biologically active enterolignans. Substantial interindividual variation in plasma concentration and urinary excretion of enterolignans has been reported, this being determined, at least in part, by the intake of lignan precursors, the gut microbiota, and the host's phase 2 conjugating enzyme activity. However, the role of ATP-binding cassette (ABC) transporters in the transport and disposition of enterolactone has not been reported so far.

View Article and Find Full Text PDF

ATP-binding cassette transporter G2/breast cancer resistance protein (ABCG2/BCRP) mediates drug-drug interactions that affect the secretion of drugs into milk. The aims of this study were: (1) to determine whether the major plasma metabolites of the flukicide triclabendazole (TCBZ), triclabendazole sulfoxide (TCBZSO) and triclabendazole sulfone (TCBZSO2), inhibit ovine and bovine ABCG2 and its Y581S variant in vitro, and (2) to examine whether coadministration of TCBZ with the ABCG2 substrates danofloxacin (a fluoroquinolone) and moxidectin (a milbemycin) affects the secretion of these drugs into the milk of sheep. TCBZSO and TCBZSO2 inhibited ruminant ABCG2 in vitro by reversing the reduced mitoxantrone accumulation and reducing basal to apical transport of nitrofurantoin in cells transduced with bovine variants (S581 and Y581) and the ovine variant of ABCG2.

View Article and Find Full Text PDF

The breast cancer resistance protein (BCRP/ABCG2) is a drug efflux transporter that can affect the pharmacological and toxicological properties of many molecules. Urolithins, metabolites produced by the gut microbiota from ellagic acid (EA) and ellagitannins, have been acknowledged with in vivo anti-inflammatory and cancer chemopreventive properties. This study evaluated whether urolithins (Uro-A, -B, -C, and -D) and their main phase II metabolites Uro-A sulfate, Uro-A glucuronide, and Uro-B glucuronide as well as their precursor EA were substrates for ABCG2/BCRP.

View Article and Find Full Text PDF