Publications by authors named "Grace Y Lau"

The repair and regeneration of loaded segmental bone defects is a challenge for both materials and biomedical science communities. Our recent work demonstrated the capability of bioactive glass in supporting bone healing and defect bridging using a rabbit femur segmental defect model without growth factors or bone marrow stromal cells (BMSCs). Here in the current work, a comprehensive in vitro evaluation of bioactive silicate (13-93) and borosilicate (2B6Sr) glass scaffolds was conducted to provide further understanding of their biological performances and to establish a correlation between in vitro and in vivo behaviors.

View Article and Find Full Text PDF

Development of bioactive glass and ceramic scaffolds intended for the reconstruction of large segmental bone defects remains a challenge for materials science due to the complexities involved in clinical implantation, bone-implant reaction, implant degradation and the multiple loading modes the implants subjected to. A comprehensive evaluation of the mechanical properties of inorganic scaffolds and exploration of new ways to toughen brittle constructs are critical prior to their successful application in loaded sites. A simple and widely adopted approach involves the coating of an inorganic scaffold with a polymeric material.

View Article and Find Full Text PDF

There has been an ongoing quest for new biomedical materials for the repair and regeneration of large segmental bone defects caused by disease or trauma. Autologous bone graft (ABG) remains the gold standard for bone repair despite their limited supply and donor-site morbidity. The current tissue engineering approach with synthetically derived bone grafts requires a bioactive ceramic or polymeric scaffold loaded with growth factors for osteoinduction and angiogenesis, and bone marrow stromal cells (BMSCs) for osteogenic properties.

View Article and Find Full Text PDF