Understanding the complexities of the human brain's function in health and disease is a formidable challenge in neuroscience. While traditional models like animals offer valuable insights, they often fall short in accurately mirroring human biology and drug responses. Moreover, recent legislation has underscored the need for more predictive models that more accurately represent human physiology.
View Article and Find Full Text PDFA growing public health concern, chronic Diesel Exhaust Particle (DEP) exposure is a heavy risk factor for the development of neurodegenerative diseases like Alzheimer's (AD). Considered the brain's first line of defense, the Blood-Brain Barrier (BBB) and perivascular microglia work in tandem to protect the brain from circulating neurotoxic molecules like DEP. Importantly, there is a strong association between AD and BBB dysfunction, particularly in the Aβ transporter and multidrug resistant pump, P-glycoprotein (P-gp).
View Article and Find Full Text PDFHuman exposures to perfluoroalkyl and polyfluoroalkyl substances (PFAS) have been linked to several diseases associated with adverse health outcomes. Animal studies have been conducted, though these may not be sufficient due to the inherent differences in metabolic processes between humans and rodents. Acquiring relevant data on the health effects of short-chain PFAS can be achieved through methods supported by in vitro human cell-based models.
View Article and Find Full Text PDFExposure to combustion-derived particulate matter (PM) such as diesel exhaust particles (DEP) is a public health concern because people in urban areas are continuously exposed, and once inhaled, fine and ultrafine DEP may reach the brain. The blood-brain barrier (BBB) endothelial cells (EC) and the perivascular microglia protect the brain from circulating pathogens and neurotoxic molecules like DEP. While the BBB-microglial interaction is critical for maintaining homeostasis, no study has previously evaluated the endothelial-microglial interaction nor comprehensively characterized these cells' inflammatory marker profiles under ultrafine DEP exposures in vitro.
View Article and Find Full Text PDFHuman exposure to environmental nanoparticles (NPs) may result in systemic distribution and accumulation of NPs. Depending on exposure conditions and their physiochemical properties, NPs could cross biological barriers and reach vital organs. This method describes an analytical technique that quantifies the nanoparticles' translocation through a sample human airway barrier.
View Article and Find Full Text PDFThe lung has been recognized as one of the main target organs for nanoparticles (NPs) exposure. Cellular uptake of nanoparticles into pulmonary components has been routinely evaluated in the conventional monoculture format, which lacks relevant cell to cell communications and interactions that are vital in the physiological environment. A more physiologically relevant co-culture model has thus been developed and described here to study the translocation of NPs across human airway barrier.
View Article and Find Full Text PDFOx66™ is a novel solid state oxygenating compound. In order to support the use of Ox66™ as a potential oxygenating supplement to injured cells, this study evaluated the safety of Ox66™, its ability to withstand the conditions in the digestive tract, and its potential to increase oxygenation in the mesentery in rats. The toxicity of Ox66™ was evaluated by performing acute (10-day) and chronic (90-day) feeding studies on rats, the stability of the compound in the digestive tract was evaluated via ex vivo simulated digestion and subsequent CFDA viability assay on gut epithelial cells, and its capacity for oxygenation in the mesenteric microcirculation was determined by interstitial fluid pressure (P) O measurements upon injection into the small intestine of rats.
View Article and Find Full Text PDFThe increasing use of nanotechnology, including nanoparticles, in the preparation of drug products requires both manufacturing and analytical considerations in order to establish the quality metrics suitable for performance and risk assessment. A range of different nanoparticle systems exists including (but not limited to) nano-drugs, nano-additives, and nano-carriers. These systems generally require more complex production and characterization strategies than conventional pharmaceutical dosage forms.
View Article and Find Full Text PDF