Hypoxia-inducible factors (HIFs) facilitate cellular adaptation to environmental stress such as low oxygen conditions (hypoxia) and consequently promote tumor growth. While HIF-1α functions in cancer progression have been increasingly recognized, the contribution of HIF-2α remains widely unclear despite accumulating reports showing its overexpression in cancer cells. Here, we report that HIF-2α up-regulates the expression of CD70, a cancer-related surface antigen that improves anchorage-independent growth in cancer cells and is associated with poor clinical prognosis, which can be induced via epigenetic modifications mediated by DNMT1.
View Article and Find Full Text PDFThe wound-healing assay is efficient and one of the most economical ways to study cell migration in vitro. Conventionally, images are taken at the beginning and end of an experiment using a phase-contrast microscope, and the migration abilities of cells are evaluated by the closure of wounds. However, cell movement is a dynamic phenomenon, and a conventional method does not allow for tracking single-cell movement.
View Article and Find Full Text PDFAdaptation to hypoxia, a hallmark feature of many tumors, is an important driver of cancer cell survival, proliferation and the development of resistance to chemotherapy. Hypoxia-induced stabilization of hypoxia-inducible factors (HIFs) leads to transcriptional activation of a network of hypoxia target genes involved in angiogenesis, cell growth, glycolysis, DNA damage repair and apoptosis. Although the transcriptional targets of hypoxia have been characterized, the alternative splicing of transcripts that occurs during hypoxia and the roles they play in oncogenesis are much less understood.
View Article and Find Full Text PDF