Human African trypanosomiasis (HAT) develops in two stages namely early stage when trypanosomes are found in the blood and late stage when trypanosomes are found in the central nervous system (CNS). The two environments are different with CNS environment reported as being hostile to the trypanosomes than the blood environment. The clinical symptoms manifested by the disease in the two environments are different.
View Article and Find Full Text PDFWe assessed the virulence and anti-trypanosomal drug sensitivity patterns of Trypanosoma brucei rhodesiense (Tbr) isolates in the Kenya Agricultural and Livestock Research Organization-Biotechnology Research Institute (KALRO-BioRI) cryobank. Specifically, the study focused on Tbr clones originally isolated from the western Kenya/eastern Uganda focus of human African Trypanosomiasis (HAT). Twelve (12) Tbr clones were assessed for virulence using groups(n = 10) of Swiss White Mice monitored for 60 days post infection (dpi).
View Article and Find Full Text PDFPrevious comparison of the body odors of tsetse-refractory waterbuck and those of tsetse-attractive ox and buffalo showed that a blend of 15 EAG-active compounds specific to waterbuck, including C5-C10 straight chain carboxylic acid homologues, methyl ketones (C8-C12 straight chain homologues and geranyl acetone), phenols (guaiacol and carvacrol) and δ-octalactone, was repellent to tsetse. A blend of four components selected from each class of compounds (δ-octalactone, pentanoic acid, guaiacol, and geranylacetone) showed repellence that is comparable to that of the 15 components blend and can provide substantial protection to cattle (more than 80%) from tsetse bites and trypanosome infections. Structure-activity studies with the lactone and phenol analogues showed that δ-nonalactone and 4-methylguaiacol are significantly more repellent than δ-octalactone and guaiacol, respectively.
View Article and Find Full Text PDFTsetse fly exhibit species-specific olfactory uniqueness potentially underpinned by differences in their chemosensory protein repertoire. We assessed 1) expansions of chemosensory protein orthologs in Glossina morsitans morsitans, Glossina pallidipes, Glossina austeni, Glossina palpalis gambiensis, Glossina fuscipes fuscipes and Glossina brevipalpis tsetse fly species using Café analysis (to identify species-specific expansions) and 2) differential expressions of the orthologs and associated proteins in male G. m.
View Article and Find Full Text PDFGlossina pallidipes is the main vector of animal African trypanosomiasis and a potential vector of human African trypanosomiasis in eastern Africa where it poses a large economic burden and public health threat. Vector control efforts have succeeded in reducing infection rates, but recent resurgence in tsetse fly population density raises concerns that vector control programs require improved strategic planning over larger geographic and temporal scales. Detailed knowledge of population structure and dispersal patterns can provide the required information to improve planning.
View Article and Find Full Text PDFNanoparticles (NPs) have gained importance in addressing drug delivery challenges across biological barriers. Here, we reformulated pentamidine, a drug used to treat Human African Trypanosomiasis (HAT) in polymer based nanoparticles and liposomes and compared their capability to enhance pentamidine penetration across blood brain barrier (BBB). Size, polydispersity index, zeta potential, morphology, pentamidine loading and drug release profiles were determined by various methods.
View Article and Find Full Text PDFBackground: The tsetse transmitted parasitic flagellate Trypanosoma congolense causes animal African trypanosomosis (AAT) across sub-Saharan Africa. AAT negatively impacts agricultural, economic, nutritional and subsequently, health status of the affected populace. The molecular mechanisms that underlie T.
View Article and Find Full Text PDFThis study assessed the virulence of Trypanosoma evansi, the causative agent of camel trypanosomiasis (surra), affecting mainly camels among other hosts in Africa, Asia and South America, with high mortality and morbidity. Using Swiss white mice, we assessed virulence of 17 T. evansi isolates collected from surra endemic countries.
View Article and Find Full Text PDFBackground: Tsetse flies (Glossina spp.) are the prominent vector of African trypanosome parasites (Trypanosoma spp.) in sub-Saharan Africa, and Glossina pallidipes is the most widely distributed species in Kenya.
View Article and Find Full Text PDFTsetse flies (Glossina spp.) transmit parasitic African trypanosomes (Trypanosoma spp.), including Trypanosoma congolense, which causes animal African trypanosomiasis (AAT).
View Article and Find Full Text PDFBackground: Glossina pallidipes is a major vector of both Human and Animal African Trypanosomiasis (HAT and AAT) in Kenya. The disease imposes economic burden on endemic regions in Kenya, including south-western Kenya, which has undergone intense but unsuccessful tsetse fly control measures. We genotyped 387 G.
View Article and Find Full Text PDFTrypanosoma evansi is the parasite causing surra, a form of trypanosomiasis in camels and other livestock, and a serious economic burden in Kenya and many other parts of the world. Trypanosoma evansi transmission can be sustained mechanically by tabanid and Stomoxys biting flies, whereas the closely related African trypanosomes T. brucei brucei and T.
View Article and Find Full Text PDFOnderstepoort J Vet Res
June 2017
Previous studies have shown that δ-octalactone is an important component of the tsetse-refractory waterbuck (Kobus defassa) repellent odour blend. In the present study, structure-activity comparison was undertaken to determine the effects of the length of the side chain and ring size of the lactone on adult Glossina pallidipes and Glossina morsitans morsitans. The responses of the flies to each compound were studied in a two-choice wind tunnel.
View Article and Find Full Text PDFFor decades, odour-baited traps have been used for control of tsetse flies (Diptera; Glossinidae), vectors of African trypanosomes. However, differential responses to known attractants have been reported in different Glossina species, hindering establishment of a universal vector control tool. Availability of full genome sequences of five Glossina species offers an opportunity to compare their chemosensory repertoire and enhance our understanding of their biology in relation to chemosensation.
View Article and Find Full Text PDFBackground: While Human African Trypanosomiasis (HAT) is in decline on the continent of Africa, the disease still remains a major health problem in Uganda. There are recurrent sporadic outbreaks in the traditionally endemic areas in south-east Uganda, and continued spread to new unaffected areas in central Uganda. We evaluated the evolutionary dynamics underpinning the origin of new foci and the impact of host species on parasite genetic diversity in Uganda.
View Article and Find Full Text PDFHuman African trypanosomiasis (HAT, sleeping sickness) ranks among the most neglected tropical diseases based on limited availability of drugs that are safe and efficacious, particularly against the second stage (central nervous system [CNS]) of infection. In response to this largely unmet need for new treatments, the Consortium for Parasitic Drug Development developed novel parenteral diamidines and corresponding oral prodrugs that have shown cure of a murine model of second stage HAT. As a rationale for selection of one of these compounds for further development, the pharmacokinetics and efficacy of intramuscular (IM) active diamidine 2,5-bis(5-amidino-2-pyridyl)furan (DB829; CPD-0802) and oral prodrug2,5-bis[5-(N-methoxyamidino)-2-pyridyl]furan (DB868) were compared in the vervet monkey model of second stage HAT.
View Article and Find Full Text PDFStudies on antioxidants as neuroprotective agents have been hampered by the impermeability of the blood brain barrier (BBB) to many compounds. However, previous studies have shown that a group of tea flavonoids, the catechins, are brain permeable and neuroprotective. Despite this remarkable observation, there exist no data on the bioavailability and pharmacological benefits of tea anthocyanins (ACNs) in the brain tissue.
View Article and Find Full Text PDF