Publications by authors named "Grace M Hooks"

Transcriptional regulator MtrR inhibits the expression of the multidrug efflux pump operon mtrCDE in the pathogenic bacterium Neisseria gonorrhoeae. Here, we show that MtrR binds the hormonal steroids progesterone, β-estradiol, and testosterone, which are present at urogenital infection sites, as well as ethinyl estrogen, a component of some hormonal contraceptives. Steroid binding leads to the decreased affinity of MtrR for cognate DNA, increased mtrCDE expression, and enhanced antimicrobial resistance.

View Article and Find Full Text PDF

Overexpression of the multidrug efflux pump MtrCDE, a critical factor of multidrug-resistance in , the causative agent of gonorrheae, is repressed by the transcriptional regulator, MtrR (multiple transferable resistance repressor). Here, we report the results from a series of experiments to identify innate, human inducers of MtrR and to understand the biochemical and structural mechanisms of the gene regulatory function of MtrR. Isothermal titration calorimetry experiments reveal that MtrR binds the hormonal steroids progesterone, β-estradiol, and testosterone, all of which are present at significant concentrations at urogenital infection sites as well as ethinyl estrogen, a component of some birth control pills.

View Article and Find Full Text PDF

Mutations within the mtrR gene are commonly found amongst multidrug resistant clinical isolates of Neisseria gonorrhoeae, which has been labelled a superbug by the Centers for Disease Control and Prevention. These mutations appear to contribute to antibiotic resistance by interfering with the ability of MtrR to bind to and repress expression of its target genes, which include the mtrCDE multidrug efflux transporter genes and the rpoH oxidative stress response sigma factor gene. However, the DNA-recognition mechanism of MtrR and the consensus sequence within these operators to which MtrR binds has remained unknown.

View Article and Find Full Text PDF

Progesterone (P4), a steroid produced during estrous cycles and gestation for maintenance of pregnancy, also plays key roles in breast development to allow lactation post-parturition. Progestins (P4 and related steroids) are also implicated in breast cancer etiology. Hormone replacement therapy containing both estrogen and progestins increases breast cancer incidence while estrogen hormone therapy lowers breast cancer risk.

View Article and Find Full Text PDF