Publications by authors named "Grace M Hobson"

An Xq22.2 region upstream of PLP1 has been proposed to underly a neurological disease trait when deleted in 46,XX females. Deletion mapping revealed that heterozygous deletions encompassing the smallest region of overlap (SRO) spanning six Xq22.

View Article and Find Full Text PDF
Article Synopsis
  • 4H leukodystrophy is an autosomal recessive disorder linked to hypomyelination and several endocrine issues, caused by mutations in genes like POLR3A and POLR3B.
  • The study involved 150 patients and aimed to systematically assess their endocrine and growth abnormalities while exploring potential genotype/phenotype links.
  • Findings revealed that delayed puberty and short stature are common in these patients, highlighting a need for more thorough investigation of endocrine problems in this group.
View Article and Find Full Text PDF

Leukodystrophies are a heterogeneous group of heritable disorders characterized by abnormal brain white matter signal on magnetic resonance imaging (MRI) and primary involvement of the cellular components of myelin. Previous estimates suggest the incidence of leukodystrophies as a whole to be 1 in 7,000 individuals, however the frequency of specific diagnoses relative to others has not been described. Next generation sequencing approaches offer the opportunity to redefine our understanding of the relative frequency of different leukodystrophies.

View Article and Find Full Text PDF

Genetic white matter disorders have heterogeneous etiologies and overlapping clinical presentations. We performed a study of the diagnostic efficacy of genome sequencing in 41 unsolved cases with prior exome sequencing, resolving an additional 14 from an historical cohort (n = 191). Reanalysis in the context of novel disease-associated genes and improved variant curation and annotation resolved 64% of cases.

View Article and Find Full Text PDF

Background: We investigated the features of the genomic rearrangements in a cohort of 50 male individuals with proteolipid protein 1 (PLP1) copy number gain events who were ascertained with Pelizaeus-Merzbacher disease (PMD; MIM: 312080). We then compared our new data to previous structural variant mutagenesis studies involving the Xq22 region of the human genome. The aggregate data from 159 sequenced join-points (discontinuous sequences in the reference genome that are joined during the rearrangement process) were studied.

View Article and Find Full Text PDF

Xq22 deletions that encompass PLP1 (Xq22-PLP1-DEL) are notable for variable expressivity of neurological disease traits in females ranging from a mild late-onset form of spastic paraplegia type 2 (MIM# 312920), sometimes associated with skewed X-inactivation, to an early-onset neurological disease trait (EONDT) of severe developmental delay, intellectual disability, and behavioral abnormalities. Size and gene content of Xq22-PLP1-DEL vary and were proposed as potential molecular etiologies underlying variable expressivity in carrier females where two smallest regions of overlap (SROs) were suggested to influence disease. We ascertained a cohort of eight unrelated patients harboring Xq22-PLP1-DEL and performed high-density array comparative genomic hybridization and breakpoint-junction sequencing.

View Article and Find Full Text PDF

DNA variants of the proteolipid protein 1 gene (PLP1) that shift PLP1/DM20 alternative splicing away from the PLP1 form toward DM20 cause the allelic X-linked leukodystrophies Pelizaeus-Merzbacher disease (PMD), spastic paraplegia 2 (SPG2), and hypomyelination of early myelinating structures (HEMS). We designed a morpholino oligomer (MO-PLP) to block use of the DM20 5' splice donor site, thereby shifting alternative splicing toward the PLP1 5' splice site. Treatment of an immature oligodendrocyte cell line with MO-PLP significantly shifted alternative splicing toward PLP1 expression from the endogenous gene and from transfected human minigene splicing constructs harboring patient variants known to reduce the amount of the PLP1 spliced product.

View Article and Find Full Text PDF

Pelizaeus-Merzbacher disease (PMD; MIM 312080), an inherited defect of central nervous system myelin formation, affects individuals in many ways, including their hearing and language abilities. The aim of this study was to assess the auditory abilities in 18 patients with PMD by examining the functional processes along the central auditory pathways using auditory brainstem responses (ABR) and cortical auditory evoked potentials (CAEP) in response to speech sounds. The significant ABR anomalies confirm the existence of dyssynchrony previously described at the level of the brainstem in patients with PMD.

View Article and Find Full Text PDF

Pelizaeus-Merzbacher disease (PMD) is a pediatric disease of myelin in the central nervous system and manifests with a wide spectrum of clinical severities. Although PMD is a rare monogenic disease, hundreds of mutations in the X-linked myelin gene proteolipid protein 1 (PLP1) have been identified in humans. Attempts to identify a common pathogenic process underlying PMD have been complicated by an incomplete understanding of PLP1 dysfunction and limited access to primary human oligodendrocytes.

View Article and Find Full Text PDF

Objective: The objective of this study was to investigate the genetic etiology of the X-linked disorder "Hypomyelination of Early Myelinating Structures" (HEMS).

Methods: We included 16 patients from 10 families diagnosed with HEMS by brain MRI criteria. Exome sequencing was used to search for causal mutations.

View Article and Find Full Text PDF

Inverted repeats (IRs) can facilitate structural variation as crucibles of genomic rearrangement. Complex duplication-inverted triplication-duplication (DUP-TRP/INV-DUP) rearrangements that contain breakpoint junctions within IRs have been recently associated with both MECP2 duplication syndrome (MIM#300260) and Pelizaeus-Merzbacher disease (PMD, MIM#312080). We investigated 17 unrelated PMD subjects with copy number gains at the PLP1 locus including triplication and quadruplication of specific genomic intervals-16/17 were found to have a DUP-TRP/INV-DUP rearrangement product.

View Article and Find Full Text PDF

Mice with Plp1 gene duplication model the most common form of Pelizaeus-Merzbacher disease (PMD), a CNS disease in which patients may suffer respiratory complications. We hypothesized that affected mice would lack airway responsiveness compared to wild-type and carrier mice during methacholine challenge. Wild-type (n = 10), carrier female (n = 6) and affected male (n = 8) mice were anesthetized-paralyzed, tracheostomized and ventilated.

View Article and Find Full Text PDF

Alternative splicing of the proteolipid protein 1 gene (PLP1) produces two forms, PLP1 and DM20, due to alternative use of 5' splice sites with the same acceptor site in intron 3. The PLP1 form predominates in central nervous system RNA. Mutations that reduce the ratio of PLP1 to DM20, whether mutant or normal protein is formed, result in the X-linked leukodystrophy Pelizaeus-Merzbacher disease (PMD).

View Article and Find Full Text PDF

Objective: Pelizaeus-Merzbacher-like disease is a rare hypomyelinating leukodystrophy caused by autosomal recessive mutations in GJC2, encoding a gap junction protein essential for production of a mature myelin sheath. A previously identified GJC2 mutation (c.-167A>G) in the promoter region is hypothesized to disrupt a putative SOX10 binding site; however, the lack of additional mutations in this region and contradictory functional data have limited the interpretation of this variant.

View Article and Find Full Text PDF

Pelizaeus-Merzbacher disease (PMD) is a hypomyelinating leukodystrophy caused by mutations of the proteolipid protein 1 gene (PLP1), which is located on the X chromosome and encodes the most abundant protein of myelin in the central nervous sytem. Approximately 60% of PMD cases result from genomic duplications of a region of the X chromosome that includes the entire PLP1 gene. The duplications are typically in a head-to-tail arrangement, and they vary in size and gene content.

View Article and Find Full Text PDF

The purpose of this article is to present contemporary information on the clinical and molecular diagnosis and the treatment of Pelizaeus-Merzbacher's disease (PMD) and related leukodystrophies. Various types of mutations of the X-linked proteolipid protein 1 gene (PLP1) that include copy number changes, point mutations, and insertions or deletions of a few bases lead to a clinical spectrum from the most severe connatal PMD, to the least severe spastic paraplegia 2 (SPG2). Signs of PMD include nystagmus, hypotonia, tremors, titubation, ataxia, spasticity, athetotic movements and cognitive impairment; the major findings in SPG2 are leg weakness and spasticity.

View Article and Find Full Text PDF

A female patient is described with clinical symptoms of both microphthalmia with linear skin defects (MLS or MIDAS) and dental enamel defects, having an appearance compatible with X-linked amelogenesis imperfecta (XAI). Genomic DNA was purified from the patient's blood and semiquantitative multiplex PCR revealed a deletion encompassing the amelogenin gene (AMELX). Because MLS is also localized to Xp22, genomic DNA was subjected to array comparative genomic hybridization, and a large heterozygous deletion was identified.

View Article and Find Full Text PDF

Mutations affecting proteolipid protein 1 (PLP1), the major protein in central nervous system myelin, cause the X-linked leukodystrophy Pelizaeus-Merzbacher disease (PMD). We describe the neuropathologic findings in a series of eight male PMD subjects with confirmed PLP1 mutations, including duplications, complete gene deletion, missense and exon-skipping. While PLP1 mutations have effects on oligodendrocytes that result in mutation-specific degrees of dysmyelination, our findings indicate that there are also unexpected effects in the central nervous system resulting in neuronal loss.

View Article and Find Full Text PDF

Pelizaeus-Merzbacher disease is a rare X-linked disorder caused by mutations of the proteolipid protein 1 gene that encodes a structural component of myelin. It is characterized by progressive psychomotor delay, nystagmus, spastic quadriplegia, and cerebellar ataxia. Variable clinical expression was seen in 5 members of a family bearing a novel missense mutation in proteolipid protein 1, c.

View Article and Find Full Text PDF

PLP1 and DM20, major myelin proteins, are generated by developmentally regulated alternative splicing. In the post-natal brain, PLP1 is the predominant product. Deletion of a splicing enhancer in PLP1 intron 3 causes a mild form of Pelizaeus-Merzbacher disease and reduces PLP1 specific splicing in vitro (Hobson, G.

View Article and Find Full Text PDF

We describe genomic structures of 59 X-chromosome segmental duplications that include the proteolipid protein 1 gene (PLP1) in patients with Pelizaeus-Merzbacher disease. We provide the first report of 13 junction sequences, which gives insight into underlying mechanisms. Although proximal breakpoints were highly variable, distal breakpoints tended to cluster around low-copy repeats (LCRs) (50% of distal breakpoints), and each duplication event appeared to be unique (100 kb to 4.

View Article and Find Full Text PDF

Objective: To report an association between spastic paraplegia type 2 with axonal peripheral neuropathy and apparent proteolipid protein gene (PLP1) silencing in a family.

Methods: Pulsed-field gel electrophoresis, custom array comparative genomic hybridization, and semi-quantitative multiplex polymerase chain reaction analyses were used to examine the PLP1 genomic region.

Results: Electrodiagnostic studies and a sural nerve biopsy showed features of a dystrophic axonal neuropathy.

View Article and Find Full Text PDF

Proteolipid protein (PLP) and DM20 are generated by alternative splicing of exon 3B of PLP1 transcript in differentiating oligodendrocytes. We investigated the role of exonic splicing enhancers (ESE) in the selection of PLP 5' donor site, focusing on putative ASF/SF2, and SC35 binding motifs in exon 3B on the basis of mutations that cause disease in humans. Mutations in a putative ASF/SF2 binding motif (nucleotides 406-412) reduced PLP 5' donor site selection, whereas a mutation in a putative SC35 binding motif (nucleotides 382-389) had no effect.

View Article and Find Full Text PDF