Publications by authors named "Grace I Anderson"

Understanding electron transport with electroactive microbes is key to engineering effective and scalable bio-electrochemical technologies. Much of this electron transfer occurs through small-molecule flavin mediators that perform one-electron transfers in abiotic systems but concerted two-electron transfer in biological systems, rendering abiotic systems less efficient. To boost efficiency, the principles guiding flavin electron transfer must be elucidated, necessitating a tunable system.

View Article and Find Full Text PDF

As more is learned about the benefits of microbes, their potential to prevent and treat disease is expanding. Microbial therapeutics are less burdensome and costly to produce than traditional molecular drugs, often with superior efficacy. Yet, as with most medicines, controlled dosing and delivery to the area of need remain key challenges for microbes.

View Article and Find Full Text PDF

The serendipitous discovery of an unorthodox ionic cocrystallization system using 2-mercaptothiazolium-based ionic liquids as a crystallization milieu paves the way for the first report of crystal structures of long-chain 1-bromoalkanes. We used single crystal X-ray diffraction to determine the structures of 1-bromo-hexadecane and 1-octadecane with the aid of ionic liquids with alkyl side chains of equivalent length to the bromoalkane at room temperature. Long alkyl chains in combination with σ-hole interactions from strategically placed sulfur motifs synergistically function to crystallize the 1-bromoalkanes.

View Article and Find Full Text PDF

A fundamental challenge underlying the design principles of ionic liquids (ILs) entails a lack of understanding into how tailored properties arise from the molecular framework of the constituent ions. Herein, we present detailed analyses of novel functional ILs containing a triarylmethyl (trityl) motif. Combining an empirically driven molecular design, thermophysical analysis, X-ray crystallography, and computational modeling, we achieved an in-depth understanding of structure-property relationships, establishing a coherent correlation with distinct trends between the thermophysical properties and functional diversity of the compound library.

View Article and Find Full Text PDF

We developed lipid-like ionic liquids, containing 2-mercaptoimidazolium and 2-mercaptothiazolinium headgroups tethered to two long saturated alkyl chains, as carriers for in vitro delivery of plasmid HEK DNA into 293T cells. We employed a combination of modular design, synthesis, X-ray analysis, and computational modeling to rationalize the self-assembly and desired physicochemical and biological properties. The results suggest that thioamide-derived ionic liquids may serve as a modular platform for lipid-mediated gene delivery.

View Article and Find Full Text PDF

Architected biomaterials, as well as sound and music, are constructed from small building blocks that are assembled across time- and length-scales. Here we present a novel deep learning-enabled integrated algorithmic workflow to merge the two concepts for radical discovery ofprotein materials, exploiting musical creativity as the foundation, and extrapolating through a recursive method to increase protein complexity by successively injecting protein chemistry into the process. Indeed, music is one of the few universal expressions that can create bridges between cultures, find associations between seemingly unrelated concepts, and can be used as a novel way to generate bio-inspired designs that derive functions from the imaginations of the creative mind.

View Article and Find Full Text PDF

In this work, we investigated the effects of a single covalent link between hydrogen bond donor species on the behavior of deep eutectic solvents (DESs) and shed light on the resulting interactions at molecular scale that influence the overall physical nature of the DES system. We have compared sugar-based DES mixtures, 1:2 choline chloride/glucose [DES] and 1:1 choline chloride/trehalose [DES]. Trehalose is a disaccharide composed of two glucose units that are connected by an α-1,4-glycosidic bond, thus making it an ideal candidate for comparison with glucose containing DES.

View Article and Find Full Text PDF

Numerous non-covalent inter-actions link together discrete mol-ecules in the crystal structure of the title compound, 2CHNO ·4Cl·HO {systematic name: 4-[(5-ethenyl-1-azonia-bicyclo-[2.2.2]octan-2-yl)(hy-droxy)meth-yl]-6-meth-oxy-quinolin-1-ium dichloride hemihydrate}.

View Article and Find Full Text PDF