The pregnane X receptor (PXR), a ligand-activated nuclear receptor, regulates the transcription of several genes that encode many enzymes and transporters related to drug metabolism. PXR also performs an important role as a physiological sensor in the modulation of endobiotic metabolism for hormones, bile acids, cholesterol, fatty acids, and glucose. Dysregulation of these PXR-mediated pathways is implicated in the progression of metabolic dysfunction-associated steatohepatitis (MASH), contributing to the complex interplay of factors involved in chronic liver disease development and exacerbation affecting millions worldwide.
View Article and Find Full Text PDFThe recent prevalence of publicly accessible, large medical imaging datasets has led to a proliferation of artificial intelligence (AI) models for cardiovascular image classification and analysis. At the same time, the potentially significant impacts of these models have motivated the development of a range of explainable AI (XAI) methods that aim to explain model predictions given certain image inputs. However, many of these methods are not developed or evaluated with domain experts, and explanations are not contextualized in terms of medical expertise or domain knowledge.
View Article and Find Full Text PDFCircadian rhythm is critical to maintaining the whole-body metabolic homeostasis of an organism. Chronic disruption of circadian rhythm by shift work is an important risk factor for metabolic diseases. Fibroblast growth factor 15/19 (FGF15/19), a key component in the liver-gut axis, potently suppresses bile acid (BA) synthesis and improves insulin sensitivity.
View Article and Find Full Text PDFBile acid (BA) signaling dysregulation is an important etiology for the development of metabolic dysfunction-associated steatotic liver disease (MASLD). As diverse signaling molecules synthesized in the liver by pathways initiated with CYP7A1 and CYP27A1, BAs are endogenous modulators of farnesoid x receptor (FXR). FXR activation is crucial in maintaining BA homeostasis, regulating lipid metabolism, and suppressing inflammation.
View Article and Find Full Text PDFCell Mol Gastroenterol Hepatol
November 2024
Background & Aims: Stearoyl-CoA desaturase-1 (SCD1) converts saturated fatty acids into monounsaturated fatty acids and plays an important regulatory role in lipid metabolism. Previous studies have demonstrated that mice deficient in SCD1 are protected from diet-induced obesity and hepatic steatosis due to altered lipid assimilation and increased energy expenditure. Previous studies in our lab have shown that intestinal SCD1 modulates intestinal and plasma lipids and alters cholesterol metabolism.
View Article and Find Full Text PDFHepatocyte nuclear factor 4 alpha antisense 1 () is a long noncoding RNA (lncRNA) gene physically located next to the transcription factor gene in the human genome. Its transcription products have been reported to inhibit the progression of hepatocellular carcinoma (HCC) and negatively regulate the expression of cytochrome P450s (CYPs), including CYP1A2, 2B6, 2C9, 2C19, 2E1, and 3A4. By altering CYP expression, lncRNA HNF4A-AS1 also contributes to the susceptibility of drug-induced liver injury.
View Article and Find Full Text PDFIntroduction: Assessing military medical teams' ability to respond to large-scale mass casualty (MASCAL) events has become a priority in preparing for future conflicts. MASCAL exercises rely on large numbers of simulated patients with limited medical training. Role-players must be appropriately prepared to ensure that medical exercises adequately assess the expected capabilities of military medical units.
View Article and Find Full Text PDFBackground: Vertical sleeve gastrectomy (SGx) is a type of bariatric surgery to treat morbid obesity and metabolic dysfunction-associated steatotic liver disease (MASLD). The molecular mechanisms of SGx to improve MASLD are unclear, but increased bile acids (BAs) and FGF19 (mouse FGF15) were observed. FGF15/19 is expressed in the ileum in response to BAs and is critical in not only suppressing BA synthesis in the liver but also promoting energy expenditure.
View Article and Find Full Text PDFThe long non-coding RNA (lncRNA) hepatocyte nuclear factor-1 alpha (HNF1A) antisense RNA 1 (HNF1A-AS1) is an important lncRNA for liver growth, development, cell differentiation, and drug metabolism. Like many lncRNAs, HNF1A-AS1 has multiple annotated alternative transcripts in the human genome. Several fundamental biological questions are still not solved: (1) How many transcripts really exist in biological samples, such as liver samples and liver cell lines? (2) What are the expression patterns of different alternative HNF1A-AS1 transcripts at different conditions, including during cell growth and development, after exposure to xenobiotics (such as drugs), and in disease conditions, such as metabolic dysfunction-associated steatotic liver disease (MASLD), alcohol-associated liver disease (ALD) cirrhosis, and obesity? (3) Does the siRNA used in previous studies knock down one or multiple transcripts? (4) Do different transcripts have the same or different functions for gene regulation? The presented data confirm the existence of several annotated HNF1A-AS1 transcripts in liver samples and cell lines, but also identify some new transcripts, which are not annotated in the Ensembl genome database.
View Article and Find Full Text PDFBile acids (BAs) are signaling molecules synthesized in the liver initially by CYP7A1 and CYP27A1 in the classical and alternative pathways, respectively. BAs are essential for cholesterol clearance, intestinal absorption of lipids, and endogenous modulators of farnesoid x receptor (FXR). FXR is critical in maintaining BA homeostasis and gut-liver crosstalk.
View Article and Find Full Text PDFBackground And Aims: Stearoyl-CoA desaturase-1 (SCD1) converts saturated fatty acids into monounsaturated fatty acids and plays an important regulatory role in lipid metabolism. Previous studies have demonstrated that mice deficient in SCD1 are protected from diet-induced obesity and hepatic steatosis due to altered lipid esterification and increased energy expenditure. Previous studies in our lab have shown that intestinal SCD1 modulates intestinal and plasma lipids and alters cholesterol metabolism.
View Article and Find Full Text PDFCancer cachexia is a systemic metabolic syndrome characterized by involuntary weight loss, and muscle and adipose tissue wasting. Mechanisms underlying cachexia remain poorly understood. Leukemia inhibitory factor (LIF), a multi-functional cytokine, has been suggested as a cachexia-inducing factor.
View Article and Find Full Text PDFThe circadian clock is an endogenous biochemical timing system that coordinates the physiology and behavior of organisms to earth's ∼24-hour circadian day/night cycle. The central circadian clock synchronized by environmental cues hierarchically entrains peripheral clocks throughout the body. The circadian system modulates a wide variety of metabolic signaling pathways to maintain whole-body metabolic homeostasis in mammals under changing environmental conditions.
View Article and Find Full Text PDFHepatobiliary Pancreat Dis Int
October 2023
The synthesis of bile acids (BAs) is carried out by complex pathways characterized by sequential chemical reactions in the liver through various cytochromes P450 (CYP) and other enzymes. Maintaining the integrity of these pathways is crucial for normal physiological function in mammals, encompassing hepatic and neurological processes. Studying on the deficiencies in BA synthesis genes offers valuable insights into the significance of BAs in modulating farnesoid X receptor (FXR) signaling and metabolic homeostasis.
View Article and Find Full Text PDFBackground: Drugs targeting the spindle assembly checkpoint (SAC), such as inhibitors of Aurora kinase B (AURKB) and dual specific protein kinase TTK, are in different stages of clinical development. However, cell response to SAC abrogation is poorly understood and there are no markers for patient selection.
Methods: A panel of 53 tumor cell lines of different origins was used.
Chronic liver diseases encompass a wide spectrum of hepatic maladies that often result in cholestasis or altered bile acid secretion and regulation. Incidence and cost of care for many chronic liver diseases are rising in the United States with few Food and Drug Administration-approved drugs available for patient treatment. Farnesoid X receptor (FXR) is the master regulator of bile acid homeostasis with an important role in lipid and glucose metabolism and inflammation.
View Article and Find Full Text PDFNitrogen mustard (NM) is a cytotoxic vesicant known to cause pulmonary injury that can progress to fibrosis. NM toxicity is associated with an influx of inflammatory macrophages in the lung. Farnesoid X receptor (FXR) is a nuclear receptor involved in bile acid and lipid homeostasis that has anti-inflammatory activity.
View Article and Find Full Text PDFNASH is within the spectrum of NAFLD, a liver condition encompassing liver steatosis, inflammation, hepatocyte injury, and fibrosis. The prevalence of NASH-induced cirrhosis is rapidly rising and has become the leading indicator for liver transplantation in the US. There is no Food and Drug Administration (FDA)-approved pharmacological intervention for NASH.
View Article and Find Full Text PDFThe effects of exposure to Myclobutanil, a triazole fungicide, on the development and progression of nonalcoholic fatty liver disease (NAFLD) are unclear, but activation of nuclear receptors (NRs) is a known mechanism of azole-induced liver toxicity. Farnesoid X receptor (FXR) is a NR and is highly expressed in the liver and intestine. Activation of FXR tightly regulates bile acid (BA), lipid and glucose homeostasis, and inflammation partly through the induction of fibroblast growth factor 15 (FGF15; human ortholog FGF19).
View Article and Find Full Text PDFNitrogen mustard (NM) is a cytotoxic vesicant known to cause acute lung injury which progresses to fibrosis; this is associated with a sequential accumulation of pro- and anti-inflammatory macrophages in the lung which have been implicated in NM toxicity. Farnesoid X receptor (FXR) is a nuclear receptor involved in regulating lipid homeostasis and inflammation. In these studies, we analyzed the role of FXR in inflammatory macrophage activation, lung injury and oxidative stress following NM exposure.
View Article and Find Full Text PDFBackground And Aims: Intestinal farnesoid X receptor (FXR) plays a critical role in alcohol-associated liver disease (ALD). We aimed to investigate whether alcohol-induced dysbiosis increased intestinal microRNA194 (miR194) that suppressed Fxr transcription and whether Lactobacillus rhamnosus GG-derived exosome-like nanoparticles (LDNPs) protected against ALD through regulation of intestinal miR194-FXR signaling in mice.
Approach And Results: Binge-on-chronic alcohol exposure mouse model was utilized.
Lysosome-mediated macroautophagy, including lipophagy, is activated under nutrient deprivation but is repressed after feeding. We show that, unexpectedly, feeding activates intestinal autophagy/lipophagy in a manner dependent on both the orphan nuclear receptor, small heterodimer partner (SHP/NR0B2), and the gut hormone, fibroblast growth factor-15/19 (FGF15/19). Furthermore, postprandial intestinal triglycerides (TGs) and apolipoprotein-B48 (ApoB48), the TG-rich chylomicron marker, were elevated in SHP-knockout and FGF15-knockout mice.
View Article and Find Full Text PDFBackground And Aims: Alcoholic liver disease (ALD) is an important and growing cause for the development of chronic liver diseases in the world. Bile acid (BA) levels are increased in patients with ALD and dysregulation of BA homeostasis worsens ALD. BA synthesis is critically regulated by fibroblast growth factor (FGF)15 in mice and FGF19 in humans.
View Article and Find Full Text PDF