The unfolded protein response (UPR) is linked to metabolic dysfunction, yet it is not known how endoplasmic reticulum (ER) disruption might influence metabolic pathways. Using a multilayered genetic approach, we find that mice with genetic ablations of either ER stress-sensing pathways (ATF6alpha, eIF2alpha, IRE1alpha) or of ER quality control (p58(IPK)) share a common dysregulated response to ER stress that includes the development of hepatic microvesicular steatosis. Rescue of ER protein processing capacity by the combined action of UPR pathways during stress prevents the suppression of a subset of metabolic transcription factors that regulate lipid homeostasis.
View Article and Find Full Text PDFIn vertebrates, three proteins--PERK, IRE1alpha, and ATF6alpha--sense protein-misfolding stress in the ER and initiate ER-to-nucleus signaling cascades to improve cellular function. The mechanism by which this unfolded protein response (UPR) protects ER function during stress is not clear. To address this issue, we have deleted Atf6alpha in the mouse.
View Article and Find Full Text PDF