Postmortem human brain tissue is a critical resource for studying neurodegenerative disease, providing critical insights into cellular morphology, pathology, and network connectivity. To improve standard microscopy and enable high-resolution, three-dimensional (3D) images of tissues at the subcellular level, tissue-clearing methods have been developed. These 3D images allow for the analysis of large regions of interest and can be used to study structural and spatial changes that occur during neurodegeneration.
View Article and Find Full Text PDFObjective: Serial sectioning optical coherence tomography (OCT) enables accurate volumetric reconstruction of several cubic centimeters of human brain samples. We aimed to identify anatomical features of the ex vivo human brain, such as intraparenchymal blood vessels and axonal fiber bundles, from the OCT data in 3D, using intrinsic optical contrast.
Methods: We developed an automatic processing pipeline to enable characterization of the intraparenchymal microvascular network in human brain samples.
The shape of the apical region of lily pollen tube changes rhythmically as the growth rate of the tube oscillates becoming alternately more prolate then back to oblate. We quantified shape change by calculating the curvature of the cross-sectional edge of the pollen tube tip and cross-correlating curvature changes with growth rate. The apical region takes the form of a partial elliptical spheroid, with variation in the length and location of the minor axis.
View Article and Find Full Text PDFIn eukaryotes, RNA polymerase II (RNApII) transcribes messenger RNA from template DNA. Decades of experiments have identified the proteins needed for transcription activation, initiation complex assembly, and productive elongation. However, the dynamics of recruitment of these proteins to transcription complexes, and of the transitions between these steps, are poorly understood.
View Article and Find Full Text PDF