Due to the enhancement of human activities on the global scale, the total amount of atmospheric nitrogen (N) deposition and the rate keep increasing, which seriously affect the structure and function of terrestrial ecosystems. In order to study the effects of N deposition on the soil structure and function of coastal saline wetlands, we established a long-term nitrogen deposition simulation platform in 2012 in the Yellow River delta (YRD). Herein, we analyzed the composition and diversity of the soil microbial community under different N deposition treatments (LNN, MNN and HNN, which stand for 50 kg N ha yr, 100 kg N ha yr, and 200 kg N ha yr) and in a water-only control (CK).
View Article and Find Full Text PDFDiurnal freeze-thaw cycles (FTCs) occur in the spring and autumn in boreal wetlands as soil temperatures rise above freezing during the day and fall below freezing at night. A surge in methane emissions from these systems is frequently documented during spring FTCs, accounting for a large portion of annual emissions. In boreal wetlands, methane is produced as a result of syntrophic microbial processes, mediated by a consortium of fermenting bacteria and methanogenic archaea.
View Article and Find Full Text PDF